module Homotopy.Conjugation where

Conjugation of paths🔗

In any type for which we know two points the existence of any identification induces an equivalence between the loop spaces and given by transport in the usual way. However, since we know ahead-of-time what transport in a type of paths computes to, we can take a short-cut and define the equivalence directly: it is given by conjugation with

opaque
  conj :  {} {A : Type ℓ} {x y : A}  y ≡ x  y ≡ y  x ≡ x
  conj p q = sym p ·· q ·· p
  conj-defn : (p : y ≡ x) (q : y ≡ y)  conj p q ≡ sym p ∙ q ∙ p
  conj-defn p q = double-composite (sym p) q p

  conj-defn' : (p : y ≡ x) (q : y ≡ y)  conj p q ≡ subst  x  x ≡ x) p q
  conj-defn' p q = conj-defn p q ∙ sym (subst-path-both q p)
  conj-refl : (l : x ≡ x)  conj refl l ≡ l
  conj-refl l = conj-defn _ _ ·· ∙-idl _ ·· ∙-idr _

  conj-∙ : (p : x ≡ y) (q : y ≡ z) (r : x ≡ x)
             conj q (conj p r) ≡ conj (p ∙ q) r
  conj-∙ p q r = transport
     i  conj-defn' q (conj-defn' p r (~ i)) (~ i) ≡ conj-defn' (p ∙ q) r (~ i))
    (sym (subst-∙  x  x ≡ x) p q r))
  conj-of-refl : (p : y ≡ x)  conj p refl ≡ refl
  conj-of-refl p = conj-defn _ _ ·· ap (sym p ∙_) (∙-idl p) ·· ∙-invl p

  conj-of-∙ : (p : y ≡ x) (q r : y ≡ y)  conj p (q ∙ r) ≡ conj p q ∙ conj p r
  conj-of-∙ = J  x p   q r  conj p (q ∙ r) ≡ conj p q ∙ conj p r) λ q r 
    conj-refl (q ∙ r) ∙ ap₂ __ (sym (conj-refl q)) (sym (conj-refl r))
opaque
  unfolding conj

  ap-conj
    :  {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {x y : A}
     (f : A  B) (p : y ≡ x) (q : y ≡ y)
     ap f (conj p q) ≡ conj (ap f p) (ap f q)
  ap-conj f p q = ap-·· f _ _ _
opaque
  conj⁻conj : conj (sym p) (conj p q) ≡ q
  conj⁻conj {p = p} {q = q} =
       ap (conj _) (conj-defn' _ _)
    ·· conj-defn' _ _
    ·· transport⁻transport  i  p i ≡ p i) q
opaque
  pathp→conj
    : {p : y ≡ x} {q₁ : y ≡ y} {q₂ : x ≡ x}
     PathP  i  p i ≡ p i) q₁ q₂  conj p q₁ ≡ q₂
  pathp→conj p = conj-defn' _ _ ∙ from-pathp p
opaque
  conj-commutative : {p q : x ≡ x}  q ∙ p ≡ p ∙ q  conj p q ≡ q
  conj-commutative α = conj-defn _ _ ·· ap₂ __ refl α ·· ∙-cancell _ _
conj-is-iso : (p : y ≡ x)  is-iso (conj p)
conj-is-iso p .inv  q = conj (sym p) q
conj-is-iso p .rinv q = conj⁻conj
conj-is-iso p .linv q = conj⁻conj