module Cat.Monoidal.Diagram.Monoid.Representable where
Externalising monoids as presheaves🔗
Let be a Cartesian monoidal category, and consider a monoid object in it. Our first observation is that, despite the definition of monoid object only referring to (the monoidal structure on and the object each set of generalised elements also carries the structure of a monoid. The unit element is given by
and the multiplication map is given by
: ∀ {m} (x : Ob) → C-Monoid m → Monoid-on (Hom x m)
Mon→Hom-mon {m} x mon = hom-mon where
Mon→Hom-mon : is-semigroup λ f g → mon .μ ∘ ⟨ f , g ⟩
has-semigroup : Monoid-on (Hom x m)
hom-mon
.Monoid-on.identity = mon .η ∘ !
hom-mon .Monoid-on._⋆_ f g = mon .μ ∘ ⟨ f , g ⟩ hom-mon
It’s not very hard to show that the monoid laws from the diagram “relativize” to each
.Monoid-on.has-is-monoid .has-is-semigroup = has-semigroup
hom-mon .Monoid-on.has-is-monoid .mon-idl {f} =
hom-mon .μ ∘ ⟨ mon .η ∘ ! , f ⟩ ≡⟨ products! prod ⟩
mon .μ ∘ (mon .η ⊗₁ id) ∘ ⟨ ! , f ⟩ ≡⟨ pulll (mon .μ-unitl) ⟩
mon
π₂ ∘ ⟨ ! , f ⟩ ≡⟨ π₂∘⟨⟩ ⟩
f ∎.Monoid-on.has-is-monoid .mon-idr {f} =
hom-mon .μ ∘ ⟨ f , mon .η ∘ ! ⟩ ≡⟨ products! prod ⟩
mon .μ ∘ (id ⊗₁ mon .η) ∘ ⟨ f , ! ⟩ ≡⟨ pulll (mon .μ-unitr) ⟩
mon
π₁ ∘ ⟨ f , ! ⟩ ≡⟨ π₁∘⟨⟩ ⟩
f ∎
.has-is-magma .has-is-set = Hom-set _ _
has-semigroup .associative {f} {g} {h} =
has-semigroup .μ ∘ ⟨ f , mon .μ ∘ ⟨ g , h ⟩ ⟩ ≡⟨ products! prod ⟩
mon .μ ∘ (id ⊗₁ mon .μ) ∘ ⟨ f , ⟨ g , h ⟩ ⟩ ≡⟨ extendl (mon .μ-assoc) ⟩
mon .μ ∘ ((mon .μ ⊗₁ id) ∘ ⟨ ⟨ π₁ , π₁ ∘ π₂ ⟩ , π₂ ∘ π₂ ⟩) ∘ ⟨ f , ⟨ g , h ⟩ ⟩ ≡⟨ products! prod ⟩
mon .μ ∘ ⟨ mon .μ ∘ ⟨ f , g ⟩ , h ⟩ ∎ mon
Thinking in terms of internal language, where we think of the as being the set of “ in context ”, our observation means that is a monoid in any context. Under this interpretation, pre-composition with a map corresponds to the substitution operation, mapping terms from the context to
Following this line of thinking, the next thing to interrogate is whether the monoid operations on terms is preserved by substitution: is precomposition with a monoid homomorphism? The answer is yes!
precompose-hom-mon-hom: ∀ {x y m} {mon : C-Monoid m}
→ (f : Hom x y)
→ Monoid-hom (Mon→Hom-mon y mon) (Mon→Hom-mon x mon) (_∘ f)
{mon = mon} f .pres-id =
precompose-hom-mon-hom (mon .η ∘ !) ∘ f ≡⟨ pullr (sym (!-unique (! ∘ f))) ⟩
.η ∘ ! ∎
mon {mon = mon} f .pres-⋆ g h =
precompose-hom-mon-hom (mon .μ ∘ ⟨ g , h ⟩) ∘ f ≡⟨ pullr (⟨⟩∘ f) ⟩
.μ ∘ ⟨ g ∘ f , h ∘ f ⟩ ∎ mon
We’ve almost shown that a monoid object fits into a presheaf of monoids, a functor mapping objects of to the monoid of generalised elements All that remains is to show functoriality, which follows immediately:
Mon→PshMon: ∀ {m} → C-Monoid m
→ Functor (C ^op) (Monoids ℓ)
{m} mon .F₀ x .fst = el! (Hom x m)
Mon→PshMon {m} mon .F₀ x .snd = Mon→Hom-mon x mon
Mon→PshMon
{m} mon .F₁ f .hom = _∘ f
Mon→PshMon {m} mon .F₁ f .preserves = precompose-hom-mon-hom {mon = mon} f
Mon→PshMon
{m} mon .F-id = ext idr
Mon→PshMon {m} mon .F-∘ f g = ext λ h → assoc h g f Mon→PshMon
And, since this presheaf is by definition given by the set of maps into an object, it’s representable!
Mon→PshMon-rep: ∀ {m} → (mon : C-Monoid m)
→ Representation {C = C} (Mon↪Sets F∘ Mon→PshMon mon)
{m = m} mon .rep = m
Mon→PshMon-rep {m = m} mon .represents = to-natural-iso ni where
Mon→PshMon-rep open make-natural-iso
: make-natural-iso (Mon↪Sets F∘ Mon→PshMon mon) (Hom-into C m)
ni .eta _ f = f
ni .inv _ f = f
ni .eta∘inv _ = refl
ni .inv∘eta _ = refl
ni .natural _ _ _ = refl ni
Now, suppose we have a pair of monoid objects, and together with a homomorphism We can now consider the postcomposition with a function of sets which maps between the relativizations of and to arbitrary contexts: it has type
Since we’ve equipped these sets with monoid structures using the internal structures on and and is a homomorphism between those, we would like for postcomposition with to also be a monoid homomorphism…. which it is!
internal-mon-hom→hom-mon-hom: ∀ {x m n} {f : Hom m n} {m-mon : C-Monoid m} {n-mon : C-Monoid n}
→ C-Monoid-hom f m-mon n-mon
→ Monoid-hom (Mon→Hom-mon x m-mon) (Mon→Hom-mon x n-mon) (f ∘_)
{f = f} {m-mon} {n-mon} hom .pres-id =
internal-mon-hom→hom-mon-hom .η ∘ ! ≡⟨ pulll (hom .pres-η) ⟩
f ∘ m-mon .η ∘ ! ∎
n-mon {f = f} {m-mon} {n-mon} hom .pres-⋆ g h =
internal-mon-hom→hom-mon-hom .μ ∘ ⟨ g , h ⟩ ≡⟨ extendl (hom .pres-μ) ⟩
f ∘ m-mon .μ ∘ f ⊗₁ f ∘ ⟨ g , h ⟩ ≡⟨ products! prod ⟩
n-mon .μ ∘ ⟨ f ∘ g , f ∘ h ⟩ ∎ n-mon
To recap, these are the facts:
A monoid object externalises to a family of where is an arbitrary object we affectionately refer to as the “context”.
Maps act by precomposition, which, extending the analogy, corresponds to substitution. Substitution along arbitrary maps is a monoid homomorphism, so extends to a functor a representable presheaf of monoids;
Monoid homomorphisms when acting by postcomposition, externalise to homomorphisms
To make this correspondence formal, we’ll define the category of representable presheaves of monoids to be the full subcategory of on the representable objects; for now, it will be denoted — a notation for which the author apologises. As usual, will denote the category of monoid objects on
We have described most of a functor It only remains to verify that the action by postcomposition of a monoid homomorphism is a natural transformation
: Functor Mon[C] RepPShMon
Mon→RepPShMon .F₀ (m , mon) .fst = Mon→PshMon mon
Mon→RepPShMon .F₀ (m , mon) .snd = Mon→PshMon-rep mon
Mon→RepPShMon
.F₁ f .η x .hom = f .hom ∘_
Mon→RepPShMon .F₁ f .η x .preserves =
Mon→RepPShMon (f .preserves)
internal-mon-hom→hom-mon-hom .F₁ f .is-natural x y g = ext λ h → assoc (f .hom) h g
Mon→RepPShMon
.F-id = ext λ x f → idl f
Mon→RepPShMon .F-∘ f g = ext λ x h → sym (assoc (f .hom) (g .hom) h) Mon→RepPShMon
This functor is a simultaneous restriction and corestriction of the Yoneda embedding on After calculating that natural transformations between representable presheaves of monoids determine monoid homomorphisms1, the usual argument will suffice to show that this functor is also fully faithful.
Nat→internal-mon-hom: ∀ {m n} {m-mon : C-Monoid m} {n-mon : C-Monoid n}
→ (α : Mon→PshMon m-mon => Mon→PshMon n-mon)
→ C-Monoid-hom (α .η m # id) m-mon n-mon
{m} {n} {m-mon} {n-mon} α .pres-η =
Nat→internal-mon-hom (α .η m # id) ∘ (m-mon .η) ≡˘⟨ ap hom (α .is-natural _ _ _) $ₚ _ ⟩
.η top # (id ∘ m-mon .η) ≡⟨ ap (α .η _ #_) (id-comm-sym ∙ ap (m-mon .η ∘_) (sym (!-unique _))) ⟩
α .η top # (m-mon .η ∘ !) ≡⟨ α .η _ .preserves .pres-id ⟩
α .η ∘ ! ≡⟨ elimr (!-unique _) ⟩
n-mon .η ∎
n-mon {m} {n} {m-mon} {n-mon} α .pres-μ =
Nat→internal-mon-hom .η m # id ∘ (m-mon .μ) ≡˘⟨ ap hom (α .is-natural _ _ _) $ₚ _ ⟩
α .η (m ⊗₀ m) # (id ∘ m-mon .μ) ≡⟨ ap (α .η _ #_) (id-comm-sym ∙ ap (m-mon .μ ∘_) (sym ⟨⟩-η)) ⟩
α .η (m ⊗₀ m) # (m-mon .μ ∘ ⟨ π₁ , π₂ ⟩) ≡⟨ α .η _ .preserves .pres-⋆ _ _ ⟩
α .μ ∘ ⟨ α .η _ # π₁ , α .η _ # π₂ ⟩ ≡˘⟨ ap (n-mon .μ ∘_) (ap₂ ⟨_,_⟩ (ap (α .η _ #_) (idl _)) (ap (α .η _ #_) (idl _))) ⟩
n-mon .μ ∘ ⟨ α .η _ # (id ∘ π₁) , α .η _ # (id ∘ π₂) ⟩ ≡⟨ ap (n-mon .μ ∘_) (ap₂ ⟨_,_⟩ (ap hom (α .is-natural _ _ _) $ₚ _) (ap hom (α .is-natural _ _ _) $ₚ _)) ⟩
n-mon .μ ∘ (α .η m # id ⊗₁ α .η m # id) ∎
n-mon
open is-iso
: is-fully-faithful Mon→RepPShMon
Mon→RepPShMon-is-ff = is-iso→is-equiv λ where
Mon→RepPShMon-is-ff .inv α .hom → α .η _ # id
.inv α .preserves → Nat→internal-mon-hom α
.rinv α → ext λ _ f →
.η _ # id ∘ f ≡˘⟨ ap hom (α .is-natural _ _ _) $ₚ _ ⟩
α .η _ # (id ∘ f) ≡⟨ ap (α .η _ #_) (idl f) ⟩
α .η _ # f ∎
α .linv h → total-hom-path _ (idr _) prop!
Internalizing presheaves of monoids🔗
Intuitively, what we have just shown is that monoids internal to yield monoids in the internal language of — giving monoids in arbitrary contexts, in a manner compatible with substitution. We will now establish the converse: If is always a monoid, then is a monoid object, as long as the monoid structures are stable under substitution — dropping the analogy, as long as the monoid structure is natural.
Hom-mon→Mon: (∀ {x y} (f : Hom x y) → identity ∘ f ≡ identity)
→ (∀ {x y} (f g : Hom y m) (h : Hom x y) → (f ⋆ g) ∘ h ≡ f ∘ h ⋆ g ∘ h)
→ C-Monoid m
The monoid operations are defined in the smallest context possible. For identity this is the empty context2, for multiplication, this is the context
.η = identity {top}
Hom-mon→Mon id-nat ⋆-nat .μ = π₁ ⋆ π₂ Hom-mon→Mon id-nat ⋆-nat
To establish the monoid laws, we’ll use the naturality conditions we imposed on the monoids
.μ-unitl =
Hom-mon→Mon id-nat ⋆-nat (π₁ ⋆ π₂) ∘ (identity ⊗₁ id) ≡⟨ ⋆-nat _ _ _ ⟩
(π₁ ∘ identity ⊗₁ id) ⋆ (π₂ ∘ identity ⊗₁ id) ≡⟨ ap₂ _⋆_ π₁∘⟨⟩ π₂∘⟨⟩ ⟩
(identity ∘ π₁) ⋆ (id ∘ π₂) ≡⟨ ap₂ _⋆_ (id-nat _) (idl _) ⟩
.idl ⟩
identity ⋆ π₂ ≡⟨ mon
π₂ ∎
.μ-unitr =
Hom-mon→Mon id-nat ⋆-nat (π₁ ⋆ π₂) ∘ (id ⊗₁ identity) ≡⟨ ⋆-nat _ _ _ ⟩
(π₁ ∘ id ⊗₁ identity) ⋆ (π₂ ∘ id ⊗₁ identity) ≡⟨ ap₂ _⋆_ π₁∘⟨⟩ π₂∘⟨⟩ ⟩
(id ∘ π₁) ⋆ (identity ∘ π₂) ≡⟨ ap₂ _⋆_ (idl _) (id-nat _) ⟩
.idr ⟩
π₁ ⋆ identity ≡⟨ mon
π₁ ∎
.μ-assoc =
Hom-mon→Mon id-nat ⋆-nat (π₁ ⋆ π₂) ∘ (id ⊗₁ (π₁ ⋆ π₂)) ≡⟨ ⋆-nat _ _ _ ⟩
(π₁ ∘ id ⊗₁ (π₁ ⋆ π₂)) ⋆ (π₂ ∘ id ⊗₁ (π₁ ⋆ π₂)) ≡⟨ ap₂ _⋆_ π₁∘⟨⟩ π₂∘⟨⟩ ⟩
(id ∘ π₁) ⋆ ((π₁ ⋆ π₂) ∘ π₂) ≡⟨ ap₂ _⋆_ (idl _) (⋆-nat _ _ _) ⟩
((π₁ ∘ π₂) ⋆ (π₂ ∘ π₂)) ≡⟨ mon.associative ⟩
π₁ ⋆ (π₁ ⋆ (π₁ ∘ π₂)) ⋆ (π₂ ∘ π₂) ≡˘⟨ ap₂ _⋆_ (⋆-nat _ _ _ ∙ ap₂ _⋆_ π₁∘⟨⟩ π₂∘⟨⟩) (idl _) ⟩
((π₁ ⋆ π₂) ∘ ⟨ π₁ , π₁ ∘ π₂ ⟩) ⋆ (id ∘ π₂ ∘ π₂) ≡⟨ ap₂ _⋆_ (ap ((π₁ ⋆ π₂) ∘_) (sym π₁∘⟨⟩)) (ap (id ∘_) (sym π₂∘⟨⟩)) ⟩
((π₁ ⋆ π₂) ∘ π₁ ∘ _) ⋆ (id ∘ π₂ ∘ _) ≡⟨ ap₂ _⋆_ (extendl (sym π₁∘⟨⟩)) (extendl (sym π₂∘⟨⟩)) ⟩
(π₁ ∘ _) ⋆ (π₂ ∘ _) ≡˘⟨ ⋆-nat _ _ _ ⟩
(π₁ ⋆ π₂) ∘ ((π₁ ⋆ π₂) ⊗₁ id) ∘ ⟨ ⟨ π₁ , π₁ ∘ π₂ ⟩ , π₂ ∘ π₂ ⟩ ∎
We will use this construction to construct the inverse of our externalisation functor. If we have a representable presheaf of monoids then, by definition, we have substitution-stable monoid structures on and natural isomorphisms for some object
RepPshMon→Mon: ∀ (P : Functor (C ^op) (Monoids ℓ))
→ (P-rep : Representation {C = C} (Mon↪Sets F∘ P))
→ C-Monoid (P-rep .rep)
= Hom-mon→Mon hom-mon η*-nat μ*-nat
RepPshMon→Mon P P-rep module RepPshMon→Mon where
As noted, the representability condition means we have specified isomorphisms between the sets — the sections of — and generalised objects where is the representing object. It follows, even if this isomorphism is not natural, that we can transfer the monoid structure to a monoid structure on
: ∀ x → Hom x m
η* = gen identity
η* x
: ∀ {x} → Hom x m → Hom x m → Hom x m
μ* {x = x} f g = gen $ (elt f) ⋆ (elt g) μ*
There is no surprise to the calculation establishing the monoid laws, here.
: ∀ {x} → (f : Hom x m) → μ* (η* x) f ≡ f
η*-idl {x} f =
η*-idl (⌜ elt (gen identity) ⌝ ⋆ elt f) ≡⟨ ap! (unext repr.invr _ _) ⟩
gen (identity ⋆ elt f) ≡⟨ ap gen PMon.idl ⟩
gen (elt f) ≡⟨ unext repr.invl _ _ ⟩
gen
f ∎
: ∀ {x} → (f : Hom x m) → μ* f (η* x) ≡ f
η*-idr {x} f =
η*-idr (elt f ⋆ ⌜ elt (gen identity) ⌝) ≡⟨ ap! (unext repr.invr _ _) ⟩
gen (elt f ⋆ identity) ≡⟨ ap gen PMon.idr ⟩
gen (elt f) ≡⟨ unext repr.invl _ _ ⟩
gen
f ∎
: ∀ {x} → (f g h : Hom x m) → μ* f (μ* g h) ≡ μ* (μ* f g) h
μ*-assoc {x} f g h =
μ*-assoc (elt f ⋆ ⌜ elt (gen (elt g ⋆ elt h)) ⌝) ≡⟨ ap! (unext repr.invr _ _) ⟩
gen (elt f ⋆ (elt g ⋆ elt h)) ≡⟨ ap gen PMon.associative ⟩
gen (⌜ elt f ⋆ elt g ⌝ ⋆ elt h) ≡⟨ ap! (sym $ unext repr.invr _ _) ⟩
gen (elt (gen (elt f ⋆ elt g)) ⋆ elt h) ∎ gen
It remains to show that this assignment is natural — which is why we asked for a natural isomorphism! A calculation mildly annoying establishes the stability of identity and multiplication under substitution.
η*-nat: ∀ {w x} (f : Hom w x)
→ η* x ∘ f ≡ η* w
{w} {x} f =
η*-nat (η* x) ∘ f ≡˘⟨ repr.to .is-natural _ _ _ $ₚ _ ⟩
(P .F₁ f .hom identity) ≡⟨ ap gen (P .F₁ f .preserves .pres-id) ⟩
gen
η* w ∎
μ*-nat: ∀ {w x} (f g : Hom x m) (h : Hom w x)
→ μ* f g ∘ h ≡ μ* (f ∘ h) (g ∘ h)
=
μ*-nat f g h .to .is-natural _ _ _ $ₚ _ ⟩
μ* f g ∘ h ≡˘⟨ repr(P .F₁ h .hom ((elt f) ⋆ (elt g))) ≡⟨ ap gen (P .F₁ h .preserves .pres-⋆ _ _) ⟩
gen ((P .F₁ h .hom (elt f)) ⋆ (P .F₁ h .hom (elt g))) ≡˘⟨ ap gen (ap₂ _⋆_ (repr.from .is-natural _ _ _ $ₚ _) (repr.from .is-natural _ _ _ $ₚ _)) ⟩
gen (f ∘ h) (g ∘ h) ∎ μ*
We now have a construction mapping representable presheaves to monoid objects. The last bit of algebra in this module establishes that internalisation followed by externalisation produces a presheaf of monoids isomorphic to the one we started with.
: is-split-eso Mon→RepPShMon
Mon→RepPShMon-is-split-eso (P , pm) .fst = pm .rep , RepPshMon→Mon P pm
Mon→RepPShMon-is-split-eso (P , pm) .snd = super-iso→sub-iso _ $ to-natural-iso ni where
Mon→RepPShMon-is-split-eso open make-natural-iso
open RepPshMon→Mon P pm
open PMon using (identity; _⋆_)
module P = Functor P
If you still have the patience for some more algebra, you can expand
this <details>
element.
: make-natural-iso (Mon→PshMon (RepPshMon→Mon P pm)) P
ni .eta x .hom = repr.from .η x
ni .inv x .hom = repr.to .η x
ni
.eta x .preserves .pres-id =
ni (η* top ∘ !) ≡⟨ ap elt (η*-nat !) ⟩
elt (η* x) ≡⟨ unext repr.invr _ _ ⟩
elt
identity ∎.eta x .preserves .pres-⋆ f g =
ni (μ* π₁ π₂ ∘ ⟨ f , g ⟩) ≡⟨ ap elt (μ*-nat _ _ _) ⟩
elt (μ* (π₁ ∘ ⟨ f , g ⟩) (π₂ ∘ ⟨ f , g ⟩)) ≡⟨ ap elt (ap₂ μ* π₁∘⟨⟩ π₂∘⟨⟩) ⟩
elt (μ* f g) ≡⟨ unext repr.invr _ _ ⟩
elt (elt f ⋆ elt g) ∎
.inv x .preserves .pres-id = sym (η*-nat _)
ni .inv x .preserves .pres-⋆ f g =
ni (f ⋆ g) ≡˘⟨ ap gen (ap₂ _⋆_ (unext repr.invr _ _) (unext repr.invr _ _)) ⟩
gen (gen f) (gen g) ≡˘⟨ ap₂ μ* π₁∘⟨⟩ π₂∘⟨⟩ ⟩
μ* (π₁ ∘ ⟨ gen f , gen g ⟩) (π₂ ∘ ⟨ gen f , gen g ⟩) ≡˘⟨ μ*-nat _ _ _ ⟩
μ*
μ* π₁ π₂ ∘ ⟨ gen f , gen g ⟩ ∎
.eta∘inv x = ext (unext repr.invr x)
ni .inv∘eta x = ext (unext repr.invl x)
ni .natural x y f = ext (sym (repr.from .is-natural _ _ _) $ₚ_) ni
Put another way, our functor is a split essential surjection — so, remembering that it was fully faithful, we conclude it’s an equivalence.
: is-equivalence Mon→RepPShMon
Mon→RepPShMon-is-equiv = ff+split-eso→is-equivalence
Mon→RepPShMon-is-equiv
Mon→RepPShMon-is-ff Mon→RepPShMon-is-split-eso
The big picture🔗
It’s easy to lose the forest for the trees here, so let’s take a step back and examine what we have done. This equivalence of categories shows that monoids in the internal language of are really monoids in Furthermore, nothing we have done relies on the structure of monoids; we could repeat the same argument with internal groups and everything would go through smoothly.
The lesson is that category theorists prefer to define internal structure in the smallest context possible, and then rely on weakening to obtain a well-behaved object in the internal language. This works, but is somewhat unnatural, and can summon pullback nasal demons that will ruin your day. For instance, defining internal categories in this manner requires taking pullbacks to ensure that the composition operation is well formed, which spirals out of control when quantifying over multiple morphisms due to coherence issues. If we take this generalized object perspective instead, such coherence issues can be avoided!
Evaluating their components at the identity morphism, as usual!↩︎
The terminal object.↩︎