module
  Cat.Instances.Comma.Univalent
  {xo xℓ yo yℓ zo zℓ}
  {X : Precategory xo xℓ} {Y : Precategory yo yℓ} {Z : Precategory zo zℓ}
  (F : Functor Y X) (G : Functor Z X)
  (xuniv : is-category X)
  (yuniv : is-category Y)
  (zuniv : is-category Z)
  whereComma categories preserve univalence🔗
Theorem. Let be a cospan of functors between three univalent categories. Then the comma category is also univalent.
It suffices to establish that, given an isomorphism in one gets an identification over which is the identity map. Since and are both univalent categories, we get (from the components of identifications and
Comma-is-category : is-category (F ↓ G)
Comma-is-category = record { to-path = objs ; to-path-over = maps } where
  module _ {ob ob'} (isom : F↓G.Isomorphism ob ob') where
    module isom = F↓G._≅_ isom
    x-is-x : ob .x Y.≅ ob' .x
    y-is-y : ob .y Z.≅ ob' .y
    x-is-x = Y.make-iso (isom.to .α) (isom.from .α) (ap α isom.invl) (ap α isom.invr)
    y-is-y = Z.make-iso (isom.to .β) (isom.from .β) (ap β isom.invl) (ap β isom.invr)Observe that, over
and
the map components
and
are equal (we say “equal” rather than “identified” because Hom-sets are
sets). This follows by standard abstract nonsense: in particular,
functors between univalent categories respect isomorphisms in a strong
sense (F-map-path).
This lets us reduce statements about and object-part action on paths to statements about their morphism parts on the components of the isomorphisms and But then we have
so over these isomorphisms the map parts become equal, thus establishing an identification
    objs : ob ≡ ob'
    objs i .x = yuniv .to-path x-is-x i
    objs i .y = zuniv .to-path y-is-y i
    objs i .map = lemma' i where
      lemma' : PathP (λ i → X.Hom (F.₀ (objs i .x)) (G.₀ (objs i .y)))
                (ob .map) (ob' .map)
      lemma' = transport
        (λ i → PathP (λ j → X.Hom (F-map-path F yuniv xuniv x-is-x (~ i) j)
                                  (F-map-path G zuniv xuniv y-is-y (~ i) j))
                    (ob .map) (ob' .map)) $
        Univalent.Hom-pathp-iso xuniv $
          X.pulll   (sym (isom.to .sq)) ∙
          X.cancelr (F.annihilate (ap α isom.invl))It still remains to show that, over this identification, the isomorphism is equal to the identity function. But this is simply a matter of pushing the identifications down to reach the “leaf” morphisms.
    maps : PathP (λ i → ob F↓G.≅ objs i) _ isom
    maps = F↓G.≅-pathp _ _
      (↓Hom-pathp _ _ (Univalent.Hom-pathp-reflr-iso yuniv (Y.idr _))
                      (Univalent.Hom-pathp-reflr-iso zuniv (Z.idr _)))