module Cat.Functor.Pullback
{o ℓ} {C : Precategory o ℓ}
where
Base change🔗
Let be a category with all pullbacks, and a morphism in Then we have a functor called the base change, where the action on objects is given by pulling back along
On objects, the functor maps as in the diagram below. It’s a bit busy, so look at it in parts: On the left we have the object of and on the right we have the whole pullback diagram, showing how the parts fit together. The actual object of the functor gives is the vertical arrow
module _ (pullbacks : Pullbacks C) {X Y : Ob} (f : Hom Y X) where
open Pullbacks pullbacks
: Functor (Slice C X) (Slice C Y)
Base-change .F₀ x = ob where
Base-change : /-Obj Y
ob .domain = Pb (x .map) f
ob .map = p₂ (x .map) f ob
On morphisms, we use the universal property of the pullback to obtain a map by observing that the square diagram below is a cone over
.F₁ {x} {y} dh = dh' where
Base-change : /-Hom _ _
dh' .map = pb (dh .map ∘ p₁ (x .map) f) _ (pulll (dh .commutes) ∙ square)
dh' .commutes = p₂∘pb dh'
The properties of pullbacks also guarantee that this operation is functorial, but the details are not particularly enlightening.
.F-id {x} = ext (sym (pb-unique id-comm (idr _)))
Base-change
.F-∘ {x} {y} {z} am bm =
Base-change (sym (pb-unique
ext (pulll p₁∘pb ∙ pullr p₁∘pb ∙ assoc _ _ _)
(pulll p₂∘pb ∙ p₂∘pb)))
Properties🔗
The base change functor is a right adjoint. We construct the left adjoint directly, then give the unit and counit, and finally prove the triangle identities.
The left adjoint, called dependent sum and written is given on objects by precomposition with and on morphisms by what is essentially the identity function — only the witness of commutativity must change.
module _ {X Y : Ob} (f : Hom Y X) where
: Functor (Slice C Y) (Slice C X)
Σf .F₀ o = cut (f ∘ o .map)
Σf .F₁ dh = record { map = dh .map ; commutes = pullr (dh .commutes) }
Σf .F-id = trivial!
Σf .F-∘ f g = trivial!
Σf
open _⊣_
The adjunction unit and counit are given by the universal properties of pullbacks. ⚠️ WIP ⚠️
module _ (pullbacks : Pullbacks C) {X Y : Ob} (f : Hom Y X) where
open Pullbacks pullbacks
open _⊣_
open _=>_
: Σf f ⊣ Base-change pullbacks f
Σf⊣f* .unit .η obj = dh where
Σf⊣f* : /-Hom _ _
dh .map = pb id (obj .map) (idr _)
dh .commutes = p₂∘pb
dh .unit .is-natural x y g =
Σf⊣f* (pb-unique₂
ext {p = (f ∘ y .map) ∘ id ∘ g .map ≡⟨ cat! C ⟩ f ∘ y .map ∘ g .map ∎}
(pulll p₁∘pb)
(pulll p₂∘pb)
(pulll p₁∘pb ∙ pullr p₁∘pb ∙ id-comm)
(pulll p₂∘pb ∙ p₂∘pb ∙ sym (g .commutes)))
.counit .η obj = dh where
Σf⊣f* : /-Hom _ _
dh .map = p₁ (obj .map) f
dh .commutes = square
dh .counit .is-natural x y g = ext p₁∘pb
Σf⊣f* .zig {A} = ext p₁∘pb
Σf⊣f* .zag {B} = ext
Σf⊣f* (sym (pb-unique₂ {p = square}
(idr _) (idr _)
(pulll p₁∘pb ∙ pullr p₁∘pb ∙ idr _)
(pulll p₂∘pb ∙ p₂∘pb)))
Equifibred natural transformations🔗
A natural transformation is called equifibred, or cartesian, if each of its naturality squares is a pullback:
is-equifibred: ∀ {oj ℓj} {J : Precategory oj ℓj} {F G : Functor J C}
→ F => G → Type _
{J = J} {F} {G} α =
is-equifibred ∀ {x y} (f : J .Precategory.Hom x y)
→ is-pullback C (F .F₁ f) (α .η y) (α .η x) (G .F₁ f)
An easy property of equifibered transformations is that they are closed under pre-whiskering:
◂-equifibred: ∀ {oj ℓj ok ℓk} {J : Precategory oj ℓj} {K : Precategory ok ℓk}
→ {F G : Functor J C} (H : Functor K J) (α : F => G)
→ is-equifibred α → is-equifibred (α ◂ H)
= eq (H .F₁ f) ◂-equifibred H α eq f