module Cat.Diagram.Pullback.Properties where
Properties of pullbacks🔗
This module chronicles some general properties of pullbacks.
Identity🔗
Degenerate squares where two opposite sides are identities are pullbacks.
: ∀ {a b : Ob} {f : Hom a b} → is-pullback C id f f id
id-is-pullback .square = id-comm
id-is-pullback .universal {p₁' = p₁'} _ = p₁'
id-is-pullback .p₁∘universal = idl _
id-is-pullback .p₂∘universal {p = p} = p ∙ idl _
id-is-pullback .unique q r = sym (idl _) ∙ q id-is-pullback
Pasting law🔗
The pasting law for pullbacks says that, if in the commutative diagram below the the right square is a pullback, then the left square is universal if, and only if, the outer rectangle is, too. Note the emphasis on the word commutative: if we don’t know that both squares (and the outer rectangle) all commute, the pasting law does not go through.
module _ {a b c d e f : Ob}
{a→d : Hom a d} {a→b : Hom a b} {b→c : Hom b c}
{d→e : Hom d e} {b→e : Hom b e} {e→f : Hom e f}
{c→f : Hom c f}
(right-pullback : is-pullback C b→c c→f b→e e→f)
where
private module right = is-pullback right-pullback
Let’s start with proving that, if the outer rectangle is a pullback, then so is the left square. Assume, then, that we have some other object which fits into a cone, like in the diagram below. I’ve coloured the two arrows we assume commutative.
pasting-outer→left-is-pullback: is-pullback C (b→c ∘ a→b) c→f a→d (e→f ∘ d→e)
→ (square : b→e ∘ a→b ≡ d→e ∘ a→d)
→ is-pullback C a→b b→e a→d d→e
= pb where
pasting-outer→left-is-pullback outer square module outer = is-pullback outer
To appeal to the universal property of the outer pullback, we must somehow extend our red cone over to one over Can we do this? Yes! By assumption, the square on the right commutes, which lets us apply commutativity of the red diagram (the assumption in the code). Check out the calculation below:
abstract
: ∀ {P} {P→b : Hom P b} {P→d : Hom P d} (p : b→e ∘ P→b ≡ d→e ∘ P→d)
path → c→f ∘ b→c ∘ P→b ≡ (e→f ∘ d→e) ∘ P→d
{_} {P→b} {P→d} p =
path .square ⟩
c→f ∘ b→c ∘ P→b ≡⟨ extendl right(e→f ∘_) p ⟩
e→f ∘ b→e ∘ P→b ≡⟨ ap
e→f ∘ d→e ∘ P→d ≡⟨ cat! C ⟩(e→f ∘ d→e) ∘ P→d ∎
: is-pullback C _ _ _ _
pb .is-pullback.square =
pb
b→e ∘ a→b ≡⟨ square ⟩ d→e ∘ a→d ∎
We thus have an induced map which, since is a pullback, makes everything in sight commute, and does so uniquely.
.universal {p₁' = P→b} {p₂' = P→d} p =
pb .universal {p₁' = b→c ∘ P→b} {p₂' = P→d} (path p)
outer
.p₁∘universal {p₁' = P→b} {p₂' = P→d} {p = p} =
pb .unique₂ {p = pulll right.square ∙ pullr p}
right(assoc _ _ _ ∙ outer.p₁∘universal)
(pulll square ∙ pullr outer.p₂∘universal)
refl p
.p₂∘universal {p₁' = P→b} {p₂' = P→d} {p = p} = outer.p₂∘universal
pb
.unique {p = p} q r =
pb .unique (sym (ap (_ ∘_) (sym q) ∙ assoc _ _ _)) r outer
For the converse, suppose that both small squares are a pullback, and we have a cone over By the universal property of the right pullback, we can find a map forming the left leg of a cone over By the universal property of the left square, we then have a map as we wanted.
pasting-left→outer-is-pullback: is-pullback C a→b b→e a→d d→e
→ (square : c→f ∘ b→c ∘ a→b ≡ (e→f ∘ d→e) ∘ a→d)
→ is-pullback C (b→c ∘ a→b) c→f a→d (e→f ∘ d→e)
= pb where
pasting-left→outer-is-pullback left square module left = is-pullback left
: is-pullback C (b→c ∘ a→b) c→f a→d (e→f ∘ d→e)
pb .is-pullback.square =
pb
c→f ∘ b→c ∘ a→b ≡⟨ square ⟩(e→f ∘ d→e) ∘ a→d ∎
.universal {p₁' = P→c} {p₂' = P→d} x =
pb .universal {p₁' = right.universal (x ∙ sym (assoc _ _ _))} {p₂' = P→d}
left.p₂∘universal
right.p₁∘universal = pullr left.p₁∘universal ∙ right.p₁∘universal
pb .p₂∘universal = left.p₂∘universal
pb .unique {p₁' = P→c} {P→d} {p = p} {lim'} q r =
pb .unique (right.unique (assoc _ _ _ ∙ q) s) r
leftwhere
: b→e ∘ a→b ∘ lim' ≡ d→e ∘ P→d
s =
s .square ⟩
b→e ∘ a→b ∘ lim' ≡⟨ pulll left(d→e ∘ a→d) ∘ lim' ≡⟨ pullr r ⟩
d→e ∘ P→d ∎
Monomorphisms🔗
Being a monomorphism is a “limit property”. Specifically, is a monomorphism iff. the square below is a pullback.
module _ {a b} {f : Hom a b} where
: is-monic f → is-pullback C id f id f
is-monic→is-pullback .square = refl
is-monic→is-pullback mono .universal {p₁' = p₁'} p = p₁'
is-monic→is-pullback mono .p₁∘universal = idl _
is-monic→is-pullback mono .p₂∘universal {p = p} = idl _ ∙ mono _ _ p
is-monic→is-pullback mono .unique p q = introl refl ∙ p
is-monic→is-pullback mono
: is-pullback C id f id f → is-monic f
is-pullback→is-monic = sym (pb .p₁∘universal {p = p}) ∙ pb .p₂∘universal is-pullback→is-monic pb f g p
Pullbacks additionally preserve monomorphisms, as shown below:
is-monic→pullback-is-monic: ∀ {x y z} {f : Hom x z} {g : Hom y z} {p} {p1 : Hom p x} {p2 : Hom p y}
→ is-monic f
→ is-pullback C p1 f p2 g
→ is-monic p2
{f = f} {g} {p1 = p1} {p2} mono pb h j p = eq
is-monic→pullback-is-monic where
module pb = is-pullback pb
: f ∘ p1 ∘ h ≡ f ∘ p1 ∘ j
q =
q .square ⟩
f ∘ p1 ∘ h ≡⟨ extendl pb(g ∘_) p ⟩
g ∘ p2 ∘ h ≡⟨ ap .square ⟩
g ∘ p2 ∘ j ≡˘⟨ extendl pb
f ∘ p1 ∘ j ∎
: p1 ∘ h ≡ p1 ∘ j
r = mono _ _ q
r
: h ≡ j
eq = pb.unique₂ {p = extendl pb.square} r p refl refl eq
A similar result holds for isomorphisms.
is-invertible→pullback-is-invertible: ∀ {x y z} {f : Hom x z} {g : Hom y z} {p} {p1 : Hom p x} {p2 : Hom p y}
→ is-invertible f
→ is-pullback C p1 f p2 g
→ is-invertible p2
{f = f} {g} {p1 = p1} {p2} f-inv pb =
is-invertible→pullback-is-invertible
make-invertible(pb.universal {p₁' = f.inv ∘ g} {p₂' = id} (cancell f.invl ∙ sym (idr _)))
.p₂∘universal
pb(pb.unique₂ {p = pulll (cancell f.invl)}
(pulll pb.p₁∘universal)
(cancell pb.p₂∘universal)
(idr _ ∙ introl f.invr ∙ extendr pb.square)
(idr _))
where
module f = is-invertible f-inv
module pb = is-pullback pb