module Cat.Diagram.Colimit.Coequaliser {o h} (C : Precategory o h) where

We establish the correspondence between Coequaliser and the Colimit of a parallel arrows diagram.

is-coequaliser→is-colimit
  :  {e} (F : Functor ·⇉· C) {coequ : Hom (F .F₀ true) e}
   (coeq : is-coequaliser C (forkl F) (forkr F) coequ)
   is-colimit {C = C} F e (Cofork→Cocone F (is-coequaliser.coequal coeq))
is-coequaliser→is-colimit {e} F {coequ} is-coeq =
  to-is-colimitp mc λ where
    {true}  refl
    {false}  refl
  where
    module is-coeq = is-coequaliser is-coeq
    open make-is-colimit

    mc : make-is-colimit F e
    mc .ψ true = coequ
    mc .ψ false = coequ ∘ forkl F
    mc .commutes {true} {true} tt = elimr (F .F-id)
    mc .commutes {false} {true} true = sym (is-coeq .coequal)
    mc .commutes {false} {true} false = refl
    mc .commutes {false} {false} tt = elimr (F .F-id)
    mc .universal eta p =
      is-coeq.universal (p {false} {true} false ∙ sym (p {false} {true} true))
    mc .factors {true} eta p =
      is-coeq.factors
    mc .factors {false} eta p =
      pulll is-coeq.factors ∙ p {false} {true} false
    mc .unique eta p other q =
      is-coeq.unique (q true)

is-colimit→is-coequaliser
  :  (F : Functor ·⇉· C) {K : Functor ⊤Cat C}
   {eta : F => K F∘ !F}
   is-lan !F F K eta
   is-coequaliser C (forkl F) (forkr F) (eta .η true)
is-colimit→is-coequaliser F {K} {eta} colim = co where
  module colim = is-colimit colim

  parallel
    :  {x}  Hom (F .F₀ true) x
     (j : Bool)  Hom (F .F₀ j) x
  parallel e' true = e'
  parallel e' false = e' ∘ forkl F

  parallel-commutes
    :  {x} {e' : Hom (F .F₀ true) x}
     e' ∘ forkl F ≡ e' ∘ forkr F
      i j  (h : ·⇉· .Precategory.Hom i j)
     parallel e' j ∘ F .F₁ {i} {j} h ≡ parallel e' i
  parallel-commutes p true true tt = elimr (F .F-id)
  parallel-commutes p false true true = sym p
  parallel-commutes p false true false = refl
  parallel-commutes p false false tt = elimr (F .F-id)

  co : is-coequaliser C (forkl F) (forkr F) (eta .η true)
  co .coequal =
    eta .is-natural false true false ∙ sym (eta .is-natural false true true)
  co .universal {e' = e'} p =
    colim.universal (parallel e')  {i} {j} h  parallel-commutes p i j h)
  co .factors = colim.factors {j = true} _ _
  co .unique {p = p} {other = other} q =
    colim.unique _ _ _ λ where
      true  q
      false 
        ap (other ∘_) (introl (K .F-id) ∙ sym (eta .is-natural false true true))
        ·· pulll q
        ·· sym p

Coequaliser→Colimit :  {F : Functor ·⇉· C}  Coequaliser C (forkl F) (forkr F)  Colimit F
Coequaliser→Colimit {F = F} coeq = to-colimit (is-coequaliser→is-colimit F (has-is-coeq coeq))

Colimit→Coequaliser :  {a b} {f g : Hom a b}  Colimit {C = C} (Fork f g)  Coequaliser C f g
Colimit→Coequaliser colim .coapex = _
Colimit→Coequaliser colim .coequ = _
Colimit→Coequaliser {f = f} {g} colim .has-is-coeq =
  is-colimit→is-coequaliser (Fork f g) (Colimit.has-colimit colim)