module Cat.Bi.Instances.Spans {o ℓ} (C : Precategory o ℓ) where
The bicategory of spans🔗
Let be a precategory. By a span in (from an object to an object we mean a diagram of the form Note that the “vertex” of this span, the object is part of the data, so that the collection of “spans in ” will not be a set (unless is strict) — so we can not construct a category where is the collection of spans from to
However, we can make spans in the objects of a category, and the hom-sets are the maps in between the vertices which “commute with the legs”. Diagrammatically, a map between spans is the dashed line in
where both the left and right triangles must commute.
record Span (a b : Ob) : Type (o ⊔ ℓ) where
constructor span
field
: Ob
apex : Hom apex a
left : Hom apex b
right
open Span
record Span-hom {a b : Ob} (x y : Span a b) : Type ℓ where
no-eta-equality
field
: Hom (x .apex) (y .apex)
map : x .left ≡ y .left ∘ map
left : x .right ≡ y .right ∘ map right
The category of spans between and admits a faithful functor to (proecting the vertex and the “middle map”, respectively), so that equality of maps of spans can be compared at the level of maps in
: Ob → Ob → Precategory _ _
Spans .Precategory.Ob = Span x y
Spans x y .Precategory.Hom = Span-hom
Spans x y .Precategory.Hom-set _ _ = hlevel 2
Spans x y .Precategory.id .map = id
Spans x y .Precategory.id .left = intror refl
Spans x y .Precategory.id .right = intror refl
Spans x y .Precategory._∘_ f g .map = f .map ∘ g .map
Spans x y .Precategory._∘_ f g .left = g .left ∙ pushl (f .left)
Spans x y .Precategory._∘_ f g .right = g .right ∙ pushl (f .right)
Spans x y .Precategory.idr f = Span-hom-path (idr _)
Spans x y .Precategory.idl f = Span-hom-path (idl _)
Spans x y .Precategory.assoc f g h = Span-hom-path (assoc _ _ _) Spans x y
Now suppose that admits pullbacks for arbitrary pairs of maps. Supposing that we have some spans and we can fit them in an M-shaped diagram like
so that taking the pullback of the diagram
gives us an universal solution to the problem of finding a span
Since pullbacks are universal, this composition operation is
functorial, and so extends to a composition operation Span-∘
:
module _ (pullbacks : Pullbacks C) where
open Pullbacks pullbacks
open Functor
: ∀ {a b c} → Functor (Spans b c ×ᶜ Spans a b) (Spans a c)
Span-∘ .F₀ (sp1 , sp2) =
Span-∘ (Pb (sp1 .left) (sp2 .right)) (sp2 .left ∘ p₂ _ _) (sp1 .right ∘ p₁ _ _)
span
.F₁ {x1 , x2} {y1 , y2} (f , g) = res
Span-∘ where
: Hom (Pb (x1 .left) (x2 .right)) (Pb (y1 .left) (y2 .right))
x→y = pb (f .map ∘ p₁ _ _) (g .map ∘ p₂ _ _) comm
x→y where abstract
: y1 .left ∘ f .map ∘ p₁ (x1 .left) (x2 .right) ≡ y2 .right ∘ g .map ∘ p₂ _ _
comm = pulll (sym (f .left)) ∙ square ∙ pushl (g .right)
comm
: Span-hom _ _
res .map = x→y
res .left = sym (pullr p₂∘pb ∙ pulll (sym (g .left)))
res .right = sym (pullr p₁∘pb ∙ pulll (sym (f .right)))
res
.F-id {x1 , x2} = Span-hom-path $ sym $ pb-unique id-comm id-comm
Span-∘
.F-∘ {x1 , x2} {y1 , y2} {z1 , z2} f g =
Span-∘
Span-hom-path $ sym $ pb-unique(pulll p₁∘pb ∙ pullr p₁∘pb ∙ assoc _ _ _)
(pulll p₂∘pb ∙ pullr p₂∘pb ∙ assoc _ _ _)
What we’ll show in the rest of this module is that Span-∘
lets us make Spans
into the categories of 1-cells of a
prebicategory, the (pre)bicategory of spans
(of
As mentioned before, this prebicategory has (a priori) no upper bound on
the h-levels of its 1-cells, so it is not locally strict. We remark that
when
is univalent, then
is locally so, and when
is gaunt, then
is strict.
Since the details of the full construction are grueling, we will present only an overview of the unitors and the associator. For the left unitor, observe that the composition is implemented by a pullback diagram like
but observe that the maps and also form a cone over the cospan so that there is a unique map filling the dashed line in the diagram above such that everything commutes: hence there is an invertible 2-cell The right unitor is analogous.
open Prebicategory
private
_¤_ : ∀ {a b c} (x : Span b c) (y : Span a b) → Span a c
= Span-∘ .F₀ (f , g)
f ¤ g
: ∀ {A B} (x : Span A B) → Span-hom x (span _ C.id C.id ¤ x)
sλ← .map = pb _ _ id-comm-sym
sλ← x .left = sym $ pullr p₂∘pb ∙ idr _
sλ← x .right = sym $ pullr p₁∘pb ∙ idl _
sλ← x
: ∀ {A B} (x : Span A B) → Span-hom x (x ¤ span _ C.id C.id)
sρ← .map = pb _ _ id-comm
sρ← x .left = sym $ pullr p₂∘pb ∙ idl _
sρ← x .right = sym $ pullr p₁∘pb ∙ idr _ sρ← x
For the associator, while doing the construction in elementary terms is quite complicated, we observe that, diagrammatically, the composite of three morphisms fits into a diagram like
so that, at a high level, there is no confusion as to which composite is meant. From then, it’s just a matter of proving pullbacks are associative (in a standard, but annoying, way), and showing that these canonically-obtained isomorphisms (are natural in all the possible variables and) satisfy the triangle and pentagon identities.
On second thought, let’s not read that. T’is a silly theorem.
: ∀ {A B C D} ((f , g , h) : Span C D × Span B C × Span A B)
sα← → Span-hom ((f ¤ g) ¤ h) (f ¤ (g ¤ h))
(f , g , h) .map = pb _ _ resp' where
sα← abstract
: g .left C.∘ p₂ (f .left) (g .right)
resp .∘ p₁ ((f ¤ g) .left) (h .right)
C.right C.∘ p₂ ((f ¤ g) .left) (h .right)
≡ h = assoc _ _ _ ∙ square
resp
= pb (p₂ _ _ C.∘ p₁ _ _) (p₂ _ _) resp
shuffle
abstract
: f .left C.∘ p₁ (f .left) (g .right)
resp' .∘ p₁ ((f ¤ g) .left) (h .right)
C(g ¤ h) .right C.∘ shuffle
≡ = sym $ pullr p₁∘pb ∙ extendl (sym (square))
resp'
(f , g , h) .left = sym $ pullr p₂∘pb ∙ pullr p₂∘pb
sα← (f , g , h) .right = sym $ pullr p₁∘pb ∙ assoc _ _ _
sα←
: ∀ {A B C D} ((f , g , h) : Span C D × Span B C × Span A B)
sα→ → Span-hom (f ¤ (g ¤ h)) ((f ¤ g) ¤ h)
(f , g , h) .map = pb _ _ resp' where
sα→ abstract
: f .left C.∘ p₁ (f .left) ((g ¤ h) .right)
resp .right C.∘ p₁ (g .left) (h .right)
≡ g .∘ p₂ (f .left) ((g ¤ h) .right)
C= square ∙ sym (assoc _ _ _)
resp
= pb (p₁ _ _) (p₁ _ _ C.∘ p₂ _ _) resp
shuffle
abstract
: (f ¤ g) .left C.∘ shuffle
resp' .right C.∘ p₂ (g .left) (h .right)
≡ h .∘ p₂ (f .left) ((g ¤ h) .right)
C= pullr p₂∘pb ∙ extendl square
resp'
(f , g , h) .left = sym $ pullr p₂∘pb ∙ assoc _ _ _
sα→ (f , g , h) .right = sym $ pullr p₁∘pb ∙ pullr p₁∘pb
sα→
open make-natural-iso
{-# TERMINATING #-}
: Prebicategory _ _ _
Spanᵇ .Ob = C.Ob
Spanᵇ .Hom = Spans
Spanᵇ .id = span _ C.id C.id
Spanᵇ .compose = Span-∘
Spanᵇ .unitor-l = to-natural-iso ni where
Spanᵇ : make-natural-iso (Id {C = Spans _ _}) _
ni .eta = sλ←
ni .inv x .map = p₂ _ _
ni .inv x .left = refl
ni .inv x .right = square
ni .eta∘inv x = Span-hom-path (pb-unique₂ {p = idl _ ∙ ap₂ C._∘_ refl (introl refl)}
ni (pulll p₁∘pb)
(pulll p₂∘pb)
(id-comm ∙ square)
)
id-comm.inv∘eta x = Span-hom-path p₂∘pb
ni .natural x y f = Span-hom-path $
ni {p = idl _ ∙ f .right}
pb-unique₂ (pulll p₁∘pb ∙ pullr p₁∘pb ∙ idl _)
(pulll p₂∘pb ∙ pullr p₂∘pb ∙ idr _)
(pulll p₁∘pb ∙ sym (f .right))
(pulll p₂∘pb ∙ idl _)
.unitor-r = to-natural-iso ni where
Spanᵇ : make-natural-iso (Id {C = Spans _ _}) _
ni .eta = sρ←
ni .inv _ .map = p₁ _ _
ni .inv _ .left = sym (square)
ni .inv _ .right = refl
ni .eta∘inv x = Span-hom-path (pb-unique₂ {p = introl refl}
ni (pulll p₁∘pb ∙ idl _)
(pulll p₂∘pb)
(idr _)
(id-comm ∙ sym (square)))
.inv∘eta x = Span-hom-path p₁∘pb
ni .natural x y f = Span-hom-path $
ni {p = sym (f .left) ∙ introl refl}
pb-unique₂ (pulll p₁∘pb ∙ pullr p₁∘pb ∙ idr _)
(pulll p₂∘pb ∙ pullr p₂∘pb ∙ idl _)
(pulll p₁∘pb ∙ idl _)
(pulll p₂∘pb ∙ sym (f .left))
.associator = to-natural-iso ni where
Spanᵇ : make-natural-iso _ _
ni .eta = sα←
ni .inv = sα→
ni .eta∘inv x = Span-hom-path $
ni {p = square}
pb-unique₂ (pulll p₁∘pb ∙ pullr p₁∘pb ∙ p₁∘pb)
(pulll p₂∘pb ∙ pb-unique₂ {p = extendl (square)}
(pulll p₁∘pb ∙ pullr p₁∘pb ∙ p₂∘pb)
(pulll p₂∘pb ∙ p₂∘pb)
)
refl refl(idr _)
(idr _)
.inv∘eta x = Span-hom-path $
ni {p = square}
pb-unique₂ (pulll p₁∘pb ∙ pb-unique₂ {p = extendl (square)}
(pulll p₁∘pb ∙ p₁∘pb)
(pulll p₂∘pb ∙ pullr p₂∘pb ∙ p₁∘pb)
)
refl refl(pulll p₂∘pb ∙ pullr p₂∘pb ∙ p₂∘pb)
(idr _)
(idr _)
.natural x y f = Span-hom-path $ pb-unique₂
ni {p₁' = f .fst .map C.∘ p₁ _ _ C.∘ p₁ _ _}
{p₂' = pb
(f .snd .fst .map C.∘ p₂ _ _ C.∘ p₁ _ _)
(f .snd .snd .map C.∘ p₂ _ _)
(pulll (sym (f .snd .fst .left)) ∙ assoc _ _ _ ∙ square ∙ pushl (f .snd .snd .right))}
{p = sym $ pullr p₁∘pb ∙ pulll (sym (f .snd .fst .right)) ∙ extendl (sym (square)) ∙ pushl (f .fst .left)}
(pulll p₁∘pb ∙ pullr p₁∘pb)
(pulll p₂∘pb ∙ pb-unique
(pulll (extendl p₁∘pb) ∙ pullr (pullr p₂∘pb) ∙ ap₂ C._∘_ refl p₁∘pb)
(pulll (extendl p₂∘pb) ∙ pullr (pullr p₂∘pb) ∙ ap₂ C._∘_ refl p₂∘pb))
(pulll p₁∘pb ∙ pullr p₁∘pb ∙ pulll p₁∘pb ∙ sym (assoc _ _ _))
(pulll p₂∘pb ∙ pb-unique
(pulll p₁∘pb ∙ pullr p₁∘pb ∙ extendl p₂∘pb)
(pulll p₂∘pb ∙ p₂∘pb))
.triangle f g = Span-hom-path $
Spanᵇ
pb-unique(pulll p₁∘pb ∙ pullr p₁∘pb ∙ p₁∘pb ∙ introl refl)
(pulll p₂∘pb ∙ pullr p₂∘pb ∙ eliml refl)
.pentagon f g h i = Span-hom-path $
Spanᵇ
pb-unique₂{p = pullr (pulll p₂∘pb ∙ pullr (pulll p₂∘pb ∙ pullr p₂∘pb) ∙ ap₂ C._∘_ refl (pulll p₁∘pb))
._∘_ refl (extendl p₂∘pb) ∙ sym (ap₂ C._∘_ refl (idl _ ∙ extendl p₂∘pb) ∙ extendl (sym (square)))}
∙ ap₂ C(pulll p₁∘pb ∙ pullr (pulll p₁∘pb))
(pulll p₂∘pb ∙ pullr (pulll p₂∘pb ∙ pullr p₂∘pb))
(pulll p₁∘pb
{p = pullr p₂∘pb ∙ extendl (square) ∙ sym (assoc _ _ _)}
∙ pb-unique₂ (pulll p₁∘pb ∙ p₁∘pb)
(pulll p₂∘pb ∙ pullr p₂∘pb)
(pulll p₁∘pb ∙ pb-unique
(pulll p₁∘pb ∙ pulll p₁∘pb ∙ p₁∘pb ∙ idl _)
(pulll p₂∘pb ∙ pulll (pullr p₂∘pb) ∙ pullr (pullr p₂∘pb ∙ pulll p₁∘pb) ∙ pulll p₁∘pb))
(pulll p₂∘pb ∙ pullr (pulll p₂∘pb ∙ pullr p₂∘pb)
._∘_ refl (pulll p₁∘pb) ∙ pulll p₂∘pb ∙ sym (assoc _ _ _)))
∙ ap₂ C( pulll p₂∘pb
·· pullr p₂∘pb(idl _ ·· pulll p₂∘pb ·· sym (assoc _ _ _))) ·· sym