module Borceux where

Though the 1Lab is not purely a formalization of category theory, it does aim to be a useful reference on the subject. However, the 1Lab organizes content in a highly non-linear fashion; this can make it somewhat difficult to use as a companion to more traditional resources.

This page attempts to (somewhat) rectify this situation by gathering all of the results from Francis Borceux’s “Handbook of Categorical Algebra” (Borceux 1994) in a single place.1

Volume 1🔗

1 The language of categories🔗

1.1 Logical foundations of the theory🔗

1.2 Categories and functors🔗

  • Definition 1.2.1: Precategory
  • Definition 1.2.2: Functor
  • Definition 1.2.3: is-strict
  • Proposition 1.2.4: Strict-cats
  • Examples 1.2.5:
      1. Sets
      1. Groups
  • Examples 1.2.6:
      1. poset→category
      1. Disc
      1. B
  • Examples 1.2.7:
      1. Slice
  • Examples 1.2.8:
      1. Ab↪Sets
      1. Hom[_,-]
      1. Const

1.3 Natural transformations🔗

  • Definition 1.3.1: _=>_
  • Proposition 1.3.2: Cat[_,_]
  • Theorem 1.3.3:
      1. yo-is-equiv
      1. yo-naturalr
      1. yo-naturall
  • Proposition 1.3.4: __
  • Proposition 1.3.5: ◆-interchange
  • Examples 1.3.6:
      1. よcov₁
      1. constⁿ

1.4 Contravariant functors🔗

Borceux defines contravariant functors as a distinct object rather than functors from this makes it somewhat difficult to map definitions on a 1-1 basis.

  • Definition 1.4.1: _^op
  • Definition 1.4.2: _^op
  • Examples 1.4.3:
      1. よcov
      1. よ₀
      1. よ₁

1.5 Full and faithful functors🔗

  • Definition 1.5.1:
      1. is-faithful
      1. is-full
      1. is-fully-faithful
      1. is-precat-iso
  • Proposition 1.5.2:
      1. よ-is-fully-faithful
      1. よcov-is-fully-faithful
  • Definition 1.5.3: Subcat
  • Definition 1.5.4: Restrict

1.6 Comma categories🔗

  • Definition 1.6.1: __
  • Proposition 1.6.2:
      1. Dom
      1. Cod
      1. θ
  • Definition 1.6.4: ∫cov
  • Definition 1.6.5: _×ᶜ_
  • Proposition 1.6.6: Cat⟨_,_

1.7 Monomorphisms🔗

  • Definition 1.7.1: is-monic
  • Proposition 1.7.2:
      1. id-monic
      1. monic-∘
      1. monic-cancell
  • Definition 1.7.3:
      1. has-section
      1. has-retract
  • Proposition 1.7.4: has-retract→monic
  • Proposition 1.7.6: faithful→reflects-mono
  • Examples 1.7.7:
      1. embedding→monic, monic→is-embedding

1.8 Epimorphisms🔗

  • Definition 1.8.1: is-epic
  • Proposition 1.8.2:
      1. id-epic
      1. epic-∘
      1. epic-cancelr
  • Proposition 1.8.3: has-section→epic
  • Proposition 1.8.4: faithful→reflects-epi
  • Examples 1.8.5:
      1. surjective→regular-epi, epi→surjective

1.9 Isomorphisms🔗

  • Definition 1.9.1: is-invertible
  • Proposition 1.9.2:
      1. id-invertible
      1. invertible-∘
      1. invertible→monic, invertible→epic
  • Proposition 1.9.3: has-retract+epic→invertible
  • Proposition 1.9.4: F-iso.F-map-invertible
  • Proposition 1.9.5: is-ff→is-conservative
  • Examples 1.9.6:
      1. equiv≃iso

1.10 The duality principle🔗

  • Definition 1.10.1: _^op
  • Examples 1.10.3:
      1. Hom[-,-]

1.11 Exercises🔗

  • Exercise 1.11.1: 🚧 thin-functor
  • Exercise 1.11.5: よ-preserves-mono
  • Exercise 1.11.6: よcov-reverses-epi
  • Exercise 1.11.8: 🚧 Curry, Uncurry
  • Exercise 1.11.9: has-section+monic→invertible

2 Limits🔗

2.1 Products🔗

  • Definition 2.1.1: is-product
  • Proposition 2.1.2: ×-Unique
  • Proposition 2.1.3:
      1. Binary-products.swap-is-iso
      1. Cartesian-monoidal
  • Definition 2.1.4: is-indexed-product
  • Proposition 2.1.5: Indexed-product-unique
  • Proposition 2.1.6: is-indexed-product-assoc

2.2 Coproducts🔗

  • Definition 2.2.1: is-indexed-coproduct
  • Proposition 2.2.2: is-indexed-coproduct→iso
  • Proposition 2.2.3: is-indexed-coproduct-assoc

2.3 Initial and terminal objects🔗

  • Definition 2.3.1:
      1. is-terminal
      1. is-initial
  • Examples 2.3.2:
      1. Sets-initial, Sets-terminal
      1. 🚧 Zero-group-is-zero

2.4 Equalizers, coequalizers🔗

  • Definition 2.4.1: is-equaliser
  • Proposition 2.4.2: is-equaliser→iso
  • Proposition 2.4.3: is-equaliser→is-monic
  • Proposition 2.4.4: id-is-equaliser
  • Proposition 2.4.5: equaliser+epi→invertible

2.5 Pullbacks, pushouts🔗

  • Definition 2.5.1: is-pullback
  • Proposition 2.5.2: Pullback-unique
  • Proposition 2.5.3:
      1. is-monic→pullback-is-monic
      1. is-invertible→pullback-is-invertible
  • Definition 2.5.4: is-kernel-pair
  • Proposition 2.5.5: is-kernel-pair→epil, is-kernel-pair→epir
  • Proposition 2.5.6:
    • (1 ⇒ 2): monic→id-kernel-pair
    • (2 ⇒ 1): id-kernel-pair→monic
    • (3 ⇒ 2): same-kernel-pair→id-kernel-pair
  • Proposition 2.5.7: is-effective-epi.is-effective-epi→is-regular-epi
  • Proposition 2.5.8: is-regular-epi→is-effective-epi
  • Proposition 2.5.9:
      1. pasting-left→outer-is-pullback
  • Examples 2.5.10
      1. Sets-pullbacks

2.6 Limits and colimits🔗

  • Definition 2.6.1: Cone
  • Definition 2.6.2: is-limit
  • Proposition 2.6.3: limits-unique
  • Proposition 2.6.4: is-limit.unique₂
  • Definition 2.6.5: Cocone
  • Definition 2.6.6: is-colimit
  • Examples 2.6.7:
      1. Limit→Equaliser, Equaliser→Limit
      1. Limit→Pullback, Pullback→Limit

2.7 Complete categories🔗

  • Definition 2.7.2: is-complete

2.8 Existence theorem for limits🔗

  • Proposition 2.8.2:
      1. with-equalisers
      1. with-pullbacks

2.9 Limit preserving functors🔗

  • Definition 2.9.1: preserves-limit
  • Proposition 2.9.3: is-lex.pres-monos
  • Proposition 2.9.4: corepresentable-preserves-limits
  • Proposition 2.9.5: representable-reverses-colimits
  • Definition 2.9.6: reflects-limit
  • Proposition 2.9.7: conservative-reflects-limits

2.10 Absolute colimits🔗

2.11 Final functors🔗

\ Warning

Borceux uses some outdated terminology here, and also uses a condition that is overly powerful. We opt to stick with the terminology from the nLab instead.

  • Definition 2.11.1: is-final
  • Proposition 2.11.2: extend-is-colimit, is-colimit-restrict

2.12 Interchange of limits🔗

2.13 Filtered colimits🔗

2.14 Universality of colimits🔗

  • Definition 2.14.1: has-stable-colimits

2.15 Limits in categories of functors🔗

  • Proposition 2.15.1: functor-limit
  • Theorem 2.15.2: Functor-cat-is-complete
  • Proposition 2.15.6: coyoneda

2.16 Limits in comma categories🔗

2.17 Exercises🔗

  • Exercise 2.17.3: 🚧 Cone→cone
  • Exercises 2.17.8: extend-is-colimit, is-colimit-restrict

3 Adjoint functors🔗

3.1 Reflection along a functor🔗

  • Definition 3.1.1: Free-object
  • Proposition 3.1.2: free-object-unique
  • Proposition 3.1.3: free-objects→left-adjoint
  • Definition 3.1.4: _⊣_
  • Theorem 3.1.5: free-objects≃left-adjoint, hom-iso→adjoints
  • Examples 3.1.6:
      1. Free-monoid⊣Forget
      1. make-free-group
      1. Disc⊣Γ, Γ⊣Codisc

3.2 Properties of adjoint functors🔗

  • Proposition 3.2.1: LF⊣GR
  • Proposition 3.2.2: right-adjoint-is-continuous

3.3 The adjoint functor theorem🔗

3.4 Fully faithful adjoint functors🔗

  • Proposition 3.4.1:
    • (⇒). is-reflective→counit-is-iso
    • (⇐). is-counit-iso→is-reflective
  • Definition 3.4.4: is-equivalence

3.5 Reflective subcategories🔗

  • Definition 3.5.2: is-reflective

3.6 Epireflective subcategories🔗

3.7 Kan extensions🔗

  • Definition 3.7.1: is-lan
  • Theorem 3.7.2: cocomplete→lan
  • Proposition 3.7.3: ff→pointwise-lan-ext
  • Proposition 3.7.4: left-adjoint→left-extension
  • Proposition 3.7.5:
    • (⇒) is-initial-cocone→is-colimit
    • (⇐) is-colimit→is-initial-cocone
  • Proposition 3.7.6:
    • (1 ⇒ 2) adjoint→is-lan-id, adjoint→is-absolute-lan

3.8 Tensor products of set-valued functors🔗

3.9 Exercises🔗

  • Exercise 3.9.2:
    • (⇒) corepresentable→left-adjoint
    • (⇐) right-adjoint→objectwise-rep
  • Exercise 3.9.3: Karoubi-is-completion

4 Generators and Projectives🔗

4.1 Well-powered categories🔗

4.2 Intersection and union🔗

4.3 Strong epimorphisms🔗

  • Definition 4.3.1: is-regular-epi
  • Definition 4.3.5: is-strong-epi
  • Proposition 4.3.6:
      1. strong-epi-compose
      1. strong-epi-cancel-l
      1. strong-epi-mono→is-invertible
      1. is-regular-epi→is-strong-epi
      1. is-strong-epi→is-extremal-epi
  • Proposition 4.3.7:
      1. equaliser-lifts→is-strong-epi
      1. is-extremal-epi→is-strong-epi

4.4 Epi-mono factorizations🔗

4.5 Generators🔗

  • Definition 4.5.1:
    • is-separating-family
    • is-separator
  • Proposition 5.4.2:
    • (⇒) separating-family→epic
    • (⇐) epic→separating-family
  • Definition 4.5.3:
    • is-strong-separating-family
    • is-regular-separating-family
  • Definition 4.5.4:
    • is-dense-separating-family
    • is-dense-separator
  • Proposition 4.5.5:
    • dense-separator→regular-separator
    • regular-separator→strong-separator
  • Definition 4.5.7:
    • is-jointly-faithful
    • is-jointly-conservative
  • Proposition 4.5.8:
    • (⇒) separating-family→jointly-faithful
    • (⇐) jointly-faithful→separating-family {.Agda}
  • Proposition 4.5.9:
    • (⇒) separator→faithful
    • (⇐) faithful→separator
  • Proposition 4.5.10:
    • (⇒) strong-separating-family→jointly-conservative
    • (⇐) lex+jointly-conservative→strong-separating-family
  • Proposition 4.5.11:
    • (⇒) strong-separator→conservative
    • (⇐) lex+conservative→strong-separator
  • Proposition 4.5.12: equalisers+jointly-conservative→separating-family
  • Proposition 4.5.14
    • (⇒) dense-separating-family→jointly-ff
    • (⇐) jointly-ff→dense-separating-family
  • Proposition 4.5.16: zero+separating-family→separator

4.6 Projectives🔗

\ Warning

Borceux uses the term “projective” to refer to strong projectives.

  • Definition 4.6.1: is-strong-projective
  • Proposition 4.6.2: Note that there is a slight typo in Borceux here: must preserve strong epimorphisms. (⇒) preserves-strong-epis→strong-projective (⇐) strong-projective→preserves-strong-epis
  • Proposition 4.6.3: indexed-coproduct-strong-projective
  • Proposition 4.6.4: retract→strong-projective
  • Definition 4.6.5: Strong-projectives
  • Proposition 4.6.6: strong-projective-separating-faily→strong-projectives
  • Proposition 4.6.7:
    • (⇒) zero+indexed-coproduct-strong-projective→strong-projective
    • (⇐) indexed-coproduct-strong-projective

4.7 Injective cogenerators🔗

4.8 Exercises🔗

5 Categories of fractions🔗

5.1 Graphs and path categories🔗

  • Definition 5.1.1: Graph
  • Definition 5.1.3: Path-in
  • Proposition 5.1.4: Path-category

5.2 Calculus of fractions🔗

  • Proposition 5.2.2: Localisation

5.3 Reflective subcategories as categories of fractinos🔗

5.4 The orthogonal subcategory problem🔗

  • Definition 5.4.1: m⊥m
  • Definition 5.4.2:
    1. m⊥o
    2. o⊥m
  • Proposition 5.4.3: object-orthogonal-!-orthogonal
  • Proposition 5.4.4:
      • (a ⇒ b) in-subcategory→orthogonal-to-inverted
      • (a ⇒ c) in-subcategory→orthogonal-to-ηs

5.5 Factorisation systems🔗

  • Definition 5.5.1: is-factorisation-system
  • Proposition 5.5.2: factorisation-essentially-unique
  • Proposition 5.5.3: 🚧 E-is-⊥M
  • Proposition 5.5.4:
      1. in-intersection≃is-iso

5.6 The case of localisations🔗

5.7 Universal closure operations🔗

5.8 The calculus of bidense morphisms🔗

5.9 Exercises🔗

6 Flat functors and Cauchy completeness🔗

6.1 Exact functors🔗

  • Definition 6.1.1: is-lex

6.2 Left exact reflection of a functor🔗

6.3 Flat functors🔗

6.4 The relevance of regular cardinals🔗

6.5 The splitting of idempotents🔗

  • Definition 6.5.1: is-idempotent
  • Proposition 6.5.2: is-split→is-idempotent
  • Definition 6.5.3: is-split
  • Definition 6.5.8: is-idempotent-complete
  • Proposition 6.5.9: Karoubi-is-completion

6.6 The more general adjoint functor theorem🔗

6.7 Exercises🔗

7 Bicategories and distributors🔗

7.1 2-categories🔗

7.2 2-functors and 2-natural transformations🔗

7.3 Modifications and n-categories🔗

7.4 2-limits and bilimits🔗

7.5 Lax functors and pseudo-functors🔗

7.6 Lax limits and pseudo-limits🔗

7.7 Bicategories🔗

  • Definition 7.7.1: Prebicategory
  • Definition 7.7.2: _⊣ᵇ_
  • Example 7.7.3: Spanᵇ

7.8 Distributors🔗

7.9 Cauchy completeness versus distributors🔗

7.10 Exercises🔗

8 Internal category theory🔗

8.1 Internal categories and functors🔗

  • Definition 8.1.1: Internal-cat
  • Definition 8.1.2: Internal-functor
  • Definition 8.1.3: _=>i_
  • Examples 8.1.6:
      1. Disci
      1. _^opi

8.2 Internal base-valued functors🔗

  • Definition 8.2.1: Outer-functor
  • Definition 8.2.2: _=>o_
  • Proposition 8.2.3: Outer-functors
  • Example 8.2.4: ConstO, const-nato

8.3 Internal limits and colimits🔗

8.4 Exercises🔗

  • Exercise 8.4.6:
    • (⇒) dependent-product→lcc
    • (⇐) lcc→dependent-product

  1. It also serves as an excellent place to find possible contributions!↩︎


References