module 1Lab.Equiv.Fibrewise where

Fibrewise equivalences🔗

In HoTT, a type family P : A → Type can be seen as a fibration with total space Σ P, with the fibration being the projection fst. Because of this, a function with type (X : _) → P x → Q x can be referred as a fibrewise map.

A function like this can be lifted to a function on total spaces:

total : ((x : A)  P x  Q x)
       Σ A P  Σ A Q
total f (x , y) = x , f x y

Furthermore, the fibres of total f correspond to fibres of f, in the following manner:

total-fibres : {f : (x : A)  P x  Q x} {x : A} {v : Q x}
              Iso (fibre (f x) v) (fibre (total f) (x , v))
total-fibres {A = A} {P = P} {Q = Q} {f = f} {x = x} {v = v} = the-iso where
  open is-iso

  to : {x : A} {v : Q x}  fibre (f x) v  fibre (total f) (x , v)
  to (v' , p) = (_ , v') , λ i  _ , p i

  from : {x : A} {v : Q x}  fibre (total f) (x , v)  fibre (f x) v
  from ((x , v) , p) = transport  i  fibre (f (p i .fst)) (p i .snd)) (v , refl)

  the-iso : {x : A} {v : Q x}  Iso (fibre (f x) v) (fibre (total f) (x , v))
  the-iso .fst = to
  the-iso .snd .is-iso.inv = from
  the-iso .snd .is-iso.rinv ((x , v) , p) =
    J  { _ p  to (from ((x , v) , p))((x , v) , p) })
      (ap to (J-refl {A = Σ A Q}  { (x , v) _  fibre (f x) v } ) (v , refl)))
      p
  the-iso .snd .is-iso.linv (v , p) =
    J  { _ p  from (to (v , p))(v , p) })
      (J-refl {A = Σ A Q}  { (x , v) _  fibre (f x) v } ) (v , refl))
      p

From this, we immediately get that a fibrewise transformation is an equivalence iff. it induces an equivalence of total spaces by total.

total→equiv : {f : (x : A)  P x  Q x}
             is-equiv (total f)
             {x : A}  is-equiv (f x)
total→equiv eqv {x} .is-eqv y =
  iso→is-hlevel 0 (total-fibres .snd .is-iso.inv)
                  (is-iso.inverse (total-fibres .snd))
                  (eqv .is-eqv (x , y))

equiv→total : {f : (x : A)  P x  Q x}
             ({x : A}  is-equiv (f x))
             is-equiv (total f)
equiv→total always-eqv .is-eqv y =
  iso→is-hlevel 0
    (total-fibres .fst)
    (total-fibres .snd)
    (always-eqv .is-eqv (y .snd))

Equivalences over🔗

We can generalise the notion of fibrewise equivalence to families over different base types, provided we have an equivalence In that case, we say that and are equivalent over if whenever and are identified over

Using univalence, we can see this as a special case of dependent paths, where the base type is taken to be the universe and the type family sends a type to the type of type families over However, the following explicit definition is easier to work with.

  _≃[_]_ :  {ℓp ℓq} (P : A  Type ℓp) (e : A ≃ B) (Q : B  Type ℓq)  Type _
  P ≃[ e ] Q =  (a : A) (b : B)  e .fst a ≡ b  P a ≃ Q b

While this definition is convenient to use, we provide helpers that make it easier to build equivalences over.

    over-left→over : (∀ (a : A)  P a ≃ Q (e.to a))  P ≃[ e ] Q
    over-left→over e' a b p = e' a ∙e line→equiv  i  Q (p i))

    over-right→over : (∀ (b : B)  P (e.from b) ≃ Q b)  P ≃[ e ] Q
    over-right→over e' a b p = line→equiv  i  P (e.adjunctl p i)) ∙e e' b

    prop-over-ext
      : (∀ {a}  is-prop (P a))
       (∀ {b}  is-prop (Q b))
       (∀ (a : A)  P a  Q (e.to a))
       (∀ (b : B)  Q b  P (e.from b))
       P ≃[ e ] Q
    prop-over-ext propP propQ P→Q Q→P a b p = prop-ext propP propQ
      (subst Q p ∘ P→Q a)
      (subst P (sym (e.adjunctl p)) ∘ Q→P b)

An equivalence over induces an equivalence of total spaces:

    over→total : P ≃[ e ] Q  Σ A P ≃ Σ B Q
    over→total e' = Σ-ap e λ a  e' a (e.to a) refl