module Cat.Monoidal.Diagram.Monoid where
Monoids in a monoidal category🔗
Let be a monoidal category you want to study. It can be, for instance, one of the endomorphism categories in a bicategory that you like. A monoid object in , generally just called a “monoid in ”, is really a collection of diagrams in centered around an object the monoid itself.
In addition to the object, we also require a “unit” map and “multiplication” map Moreover, these maps should be compatible with the unitors and associator of the underlying monoidal category:
record Monoid-on (M : C.Ob) : Type ℓ where
no-eta-equality
field
: C.Hom C.Unit M
η : C.Hom (M C.⊗ M) M
μ
: μ C.∘ (η C.⊗₁ C.id) ≡ C.λ←
μ-unitl : μ C.∘ (C.id C.⊗₁ η) ≡ C.ρ←
μ-unitr : μ C.∘ (C.id C.⊗₁ μ) ≡ μ C.∘ (μ C.⊗₁ C.id) C.∘ C.α← _ _ _ μ-assoc
If we think of as a bicategory with a single object — that is, we deloop it —, then a monoid in is given by precisely the same data as a monad in on the object
: (M : Monad BC tt) → Monoid-on (M .Monad.M)
monad→monoid = go where
monad→monoid M module M = Monad M
: Monoid-on M.M
go .η = M.η
go .μ = M.μ
go .μ-unitl = M.μ-unitl
go .μ-unitr = M.μ-unitr
go .μ-assoc = M.μ-assoc
go
: ∀ {M} → Monoid-on M → Monad BC tt
monoid→monad = go where
monoid→monad M module M = Monoid-on M
: Monad BC tt
go .Monad.M = _
go .Monad.μ = M.μ
go .Monad.η = M.η
go .Monad.μ-assoc = M.μ-assoc
go .Monad.μ-unitr = M.μ-unitr
go .Monad.μ-unitl = M.μ-unitl go
Put another way, a monad is just a monoid in the category of
endofunctors endo-1-cells, what’s the problem?
The category Mon(C)🔗
The monoid objects in
can be made into a category, much like the monoids in the category of sets. In fact,
we shall see later that when
is equipped with its Cartesian monoidal
structure,
Rather than defining
directly as a category, we instead define it as a category
displayed
over
which fits naturally with the way we have defined Monoid-object-on
.
Therefore, rather than defining a type of monoid homomorphisms, we define a predicate on maps expressing the condition of being a monoid homomorphism. This is the familiar condition from algebra, but expressed in a point-free way:
record
{m n} (f : C.Hom m n)
is-monoid-hom (mo : Monoid-on M m) (no : Monoid-on M n) : Type ℓ where
private
module m = Monoid-on mo
module n = Monoid-on no
field
: f C.∘ m.η ≡ n.η
pres-η : f C.∘ m.μ ≡ n.μ C.∘ (f C.⊗₁ f) pres-μ
Since being a monoid homomorphism is a pair of propositions, the overall condition is a proposition as well. This means that we will not need to concern ourselves with proving displayed identity and associativity laws, a great simplification.
_] : Displayed C ℓ ℓ
Mon[_] .Ob[_] = Monoid-on M
Mon[_] .Hom[_] = is-monoid-hom
Mon[_] .Hom[_]-set f x y = hlevel 2 Mon[
The most complicated step of putting together the displayed category of monoid objects is proving that monoid homomorphisms are closed under composition. However, even in the point-free setting of an arbitrary category the reasoning isn’t that painful:
_] .id' .pres-η = C.idl _
Mon[_] .id' .pres-μ = C.idl _ ∙ C.intror (C.-⊗- .F-id)
Mon[
_] ._∘'_ fh gh .pres-η = C.pullr (gh .pres-η) ∙ fh .pres-η
Mon[_] ._∘'_ {x = x} {y} {z} {f} {g} fh gh .pres-μ =
Mon[(f C.∘ g) C.∘ x .Monoid-on.μ ≡⟨ C.pullr (gh .pres-μ) ⟩
.∘ y .Monoid-on.μ C.∘ (g C.⊗₁ g) ≡⟨ C.extendl (fh .pres-μ) ⟩
f C.μ z C.∘ (f C.⊗₁ f) C.∘ (g C.⊗₁ g) ≡˘⟨ C.refl⟩∘⟨ C.-⊗- .F-∘ _ _ ⟩
Monoid-on.μ z C.∘ (f C.∘ g C.⊗₁ f C.∘ g) ∎
Monoid-on
_] .idr' f = prop!
Mon[_] .idl' f = prop!
Mon[_] .assoc' f g h = prop! Mon[
Constructing this displayed category for the Cartesian monoidal structure on the category of sets, we find that it is but a few renamings away from the ordinary category of monoids-on-sets. The only thing out of the ordinary about the proof below is that we can establish the displayed categories themselves are identical, so it is a trivial step to show they induce identical1 total categories.
: ∀ {ℓ} → Mon[ Setsₓ ] ≡ Mon {ℓ}
Mon[Sets]≡Mon {ℓ} = Displayed-path F (λ a → is-iso→is-equiv (fiso a)) ff where
Mon[Sets]≡Mon open Displayed-functor
open Monoid-on
open is-monoid-hom
open Mon.Monoid-hom
open Mon.Monoid-on
The construction proceeds in three steps: First, put together a functor (displayed over the identity) Then, prove that its action on objects (“step 2”) and action on morphisms (“step 3”) are independently equivalences of types. The characterisation of paths of displayed categories will take care of turning this data into an identification.
: Displayed-functor Mon[ Setsₓ ] Mon Id
F .F₀' o .identity = o .η (lift tt)
F .F₀' o ._⋆_ x y = o .μ (x , y)
F .F₀' o .has-is-monoid .Mon.has-is-semigroup =
F record { has-is-magma = record { has-is-set = hlevel 2 }
; associative = o .μ-assoc $ₚ _
}
.F₀' o .has-is-monoid .Mon.idl = o .μ-unitl $ₚ _
F .F₀' o .has-is-monoid .Mon.idr = o .μ-unitr $ₚ _
F .F₁' wit .pres-id = wit .pres-η $ₚ _
F .F₁' wit .pres-⋆ x y = wit .pres-μ $ₚ _
F .F-id' = prop!
F .F-∘' = prop!
F
open is-iso
: ∀ a → is-iso (F .F₀' {a})
fiso .inv m .η _ = m .identity
fiso T .inv m .μ (a , b) = m ._⋆_ a b
fiso T .inv m .μ-unitl = funext λ _ → m .idl
fiso T .inv m .μ-unitr = funext λ _ → m .idr
fiso T .inv m .μ-assoc = funext λ _ → m .associative
fiso T .rinv x = Mon.Monoid-structure _ .id-hom-unique
fiso T (record { pres-id = refl ; pres-⋆ = λ _ _ → refl })
(record { pres-id = refl ; pres-⋆ = λ _ _ → refl })
.linv m = Monoid-pathp Setsₓ refl refl
fiso T
: ∀ {a b : Set _} {f : ∣ a ∣ → ∣ b ∣} {a' b'}
ff → is-equiv (F₁' F {a} {b} {f} {a'} {b'})
{a} {b} {f} {a'} {b'} = biimp-is-equiv! (λ z → F₁' F z) invs where
ff : Mon.Monoid-hom (F .F₀' a') (F .F₀' b') f → is-monoid-hom Setsₓ f a' b'
invs .pres-η = funext λ _ → m .pres-id
invs m .pres-μ = funext λ _ → m .pres-⋆ _ _ invs m
Monoidal functors preserve monoids🔗
If is a lax monoidal functor between monoidal categories and and is a monoid in then can be equipped with the structure of a monoid in
We can phrase this nicely as a displayed functor over
_] : Displayed-functor Mon[ MC ] Mon[ MD ] F
Mon₁[_] .F₀' m .η = F₁ (m .η) ∘ ε
Mon₁[_] .F₀' m .μ = F₁ (m .μ) ∘ φ Mon₁[
The unit laws are witnessed by the commutativity of this diagram:
_] .F₀' m .μ-unitl =
Mon₁[(F₁ (m .μ) ∘ φ) ∘ ((F₁ (m .η) ∘ ε) ⊗₁ id) ≡⟨ pullr (refl⟩∘⟨ ⊗.expand (refl ,ₚ F.introl refl)) ⟩
(m .μ) ∘ φ ∘ (F₁ (m .η) ⊗₁ F₁ C.id) ∘ (ε ⊗₁ id) ≡⟨ refl⟩∘⟨ extendl (φ.is-natural _ _ _) ⟩
F₁ (m .μ) ∘ F₁ (m .η C.⊗₁ C.id) ∘ φ ∘ (ε ⊗₁ id) ≡⟨ F.pulll (m .μ-unitl) ⟩
F₁ .λ← ∘ φ ∘ (ε ⊗₁ id) ≡⟨ F-λ← ⟩
F₁ C
λ← ∎_] .F₀' m .μ-unitr =
Mon₁[(F₁ (m .μ) ∘ φ) ∘ (id ⊗₁ (F₁ (m .η) ∘ ε)) ≡⟨ pullr (refl⟩∘⟨ ⊗.expand (F.introl refl ,ₚ refl)) ⟩
(m .μ) ∘ φ ∘ (F₁ C.id ⊗₁ F₁ (m .η)) ∘ (id ⊗₁ ε) ≡⟨ refl⟩∘⟨ extendl (φ.is-natural _ _ _) ⟩
F₁ (m .μ) ∘ F₁ (C.id C.⊗₁ m .η) ∘ φ ∘ (id ⊗₁ ε) ≡⟨ F.pulll (m .μ-unitr) ⟩
F₁ .ρ← ∘ φ ∘ (id ⊗₁ ε) ≡⟨ F-ρ← ⟩
F₁ C ρ← ∎
… and the associativity by this one.
_] .F₀' m .μ-assoc =
Mon₁[(F₁ (m .μ) ∘ φ) ∘ (id ⊗₁ (F₁ (m .μ) ∘ φ)) ≡⟨ pullr (refl⟩∘⟨ ⊗.expand (F.introl refl ,ₚ refl)) ⟩
(m .μ) ∘ φ ∘ (F₁ C.id ⊗₁ F₁ (m .μ)) ∘ (id ⊗₁ φ) ≡⟨ (refl⟩∘⟨ extendl (φ.is-natural _ _ _)) ⟩
F₁ (m .μ) ∘ F₁ (C.id C.⊗₁ m .μ) ∘ φ ∘ (id ⊗₁ φ) ≡⟨ F.pulll (m .μ-assoc) ⟩
F₁ (m .μ C.∘ (m .μ C.⊗₁ C.id) C.∘ C.α← _ _ _) ∘ φ ∘ (id ⊗₁ φ) ≡⟨ F.popr (F.popr F-α←) ⟩
F₁ (m .μ) ∘ F₁ (m .μ C.⊗₁ C.id) ∘ φ ∘ (φ ⊗₁ id) ∘ α← _ _ _ ≡˘⟨ pullr (extendl (φ.is-natural _ _ _)) ⟩
F₁ (F₁ (m .μ) ∘ φ) ∘ (F₁ (m .μ) ⊗₁ F₁ C.id) ∘ (φ ⊗₁ id) ∘ α← _ _ _ ≡⟨ refl⟩∘⟨ ⊗.pulll (refl ,ₚ F.eliml refl) ⟩
(F₁ (m .μ) ∘ φ) ∘ ((F₁ (m .μ) ∘ φ) ⊗₁ id) ∘ α← _ _ _ ∎
Functoriality for means that, given a monoid homomorphism the map is a monoid homomorphism between the induced monoids on and
_] .F₁' h .pres-η = F.pulll (h .pres-η)
Mon₁[_] .F₁' h .pres-μ = F.extendl (h .pres-μ) ∙ pushr (sym (φ.is-natural _ _ _))
Mon₁[_] .F-id' = prop!
Mon₁[_] .F-∘' = prop! Mon₁[
thus isomorphic, thus equivalent↩︎