module Cat.Functor.Adjoint.Reflective where
Reflective subcategories🔗
Occasionally, full subcategory inclusions (hence fully faithful functors — like the inclusion of abelian groups into the category of all groups, or the inclusion participate in an adjunction
When this is the case, we refer to the left adjoint functor as the reflector, and exhibits as a reflective subcategory of Reflective subcategory inclusions are of particular importance because they are monadic functors: They exhibit as the category of algebras for an (idempotent) monad on
: F ⊣ G → Type _
is-reflective {G = G} adj = is-fully-faithful G is-reflective
The first thing we will prove is that the counit map of a reflexive subcategory inclusion is an isomorphism. Since is fully faithful, the unit map corresponds to a map and this map can be seen to be a left- and right- inverse to applying the triangle identities.
module
_ {C : Precategory o ℓ} {D : Precategory o' ℓ'} {F : Functor C D} {G : Functor D C}
(adj : F ⊣ G) (g-ff : is-reflective adj)
where
private
module DD = Cat.Reasoning Cat[ D , D ]
module C = Cat.Reasoning C
module D = Cat.Reasoning D
module F = Func F
module G = Func G
module GF = Func (G F∘ F)
module FG = Func (F F∘ G)
module g-ff {x} {y} = Equiv (_ , g-ff {x} {y})
open _⊣_ adj
: ∀ {o} → FG.₀ o D.≅ o
is-reflective→counit-is-iso {o} = morp where
is-reflective→counit-is-iso : F.₀ (G.₀ o) D.≅ o
morp = D.make-iso (ε _) (g-ff.from (unit.η _)) invl invr
morp where abstract
: ε o D.∘ g-ff.from (unit.η (G.₀ o)) ≡ D.id
invl = ff→faithful {F = G} g-ff (
invl .₁ (ε o D.∘ _) ≡⟨ G.F-∘ _ _ ⟩
G.₁ (ε o) C.∘ G.₁ (g-ff.from _) ≡⟨ C.refl⟩∘⟨ g-ff.ε _ ⟩
G.₁ (ε o) C.∘ unit.η (G.₀ o) ≡⟨ zag ∙ sym G.F-id ⟩
G.₁ D.id ∎)
G
: g-ff.from (unit.η (G.₀ o)) D.∘ ε o ≡ D.id
invr = ff→faithful {F = G} g-ff (ap G.₁ (
invr .from _ D.∘ ε _ ≡˘⟨ counit.is-natural _ _ _ ⟩
g-ff_ D.∘ F.₁ (G.₁ (g-ff.from _)) ≡⟨ D.refl⟩∘⟨ F.⟨ g-ff.ε _ ⟩ ⟩
ε _ D.∘ F.₁ (unit.η _) ≡⟨ zig ⟩
ε .id ∎))
D
: (F F∘ G) DD.≅ Id
is-reflective→counit-iso = DD.invertible→iso counit invs where
is-reflective→counit-iso = invertible→invertibleⁿ counit λ x →
invs .iso→invertible (is-reflective→counit-is-iso {o = x}) D
We can now prove that the adjunction is monadic.
is-reflective→is-monadic: ∀ {F : Functor C D} {G : Functor D C}
→ (adj : F ⊣ G) → is-reflective adj → is-monadic adj
{C = C} {D = D} {F = F} {G} adj g-ff = eqv where is-reflective→is-monadic
It suffices to show that the comparison functor is fully faithful and split essentially surjective. For full faithfulness, observe that it’s always faithful; The fullness comes from the assumption that is ff.
: is-fully-faithful Comp
comp-ff {x} {y} = is-iso→is-equiv isom where
comp-ff open is-iso
: is-iso _
isom .inv alg = equiv→inverse g-ff (alg .hom)
isom .rinv x = ext (equiv→counit g-ff _)
isom .linv x = equiv→unit g-ff _ isom
To show that the comparison functor is split essentially surjective, suppose we have an object admitting the structure of an We will show that as — note that admits a canonical (free) algebra structure. The algebra map provides an algebra morphism from and the morphism is can be taken to be adjunction unit
The crucial lemma in establishing that these are inverses is that which follows because both of those morphisms are right inverses to which is an isomorphism because is.
: is-split-eso Comp
comp-seso (ob , alg) = F.₀ ob , isom where
comp-seso : Algebra-hom (L∘R adj) (Comp.₀ (F.₀ ob)) (ob , alg)
Fo→o .hom = alg .ν
Fo→o .preserves = sym (alg .ν-mult)
Fo→o
: Algebra-hom (L∘R adj) (ob , alg) (Comp.₀ (F.₀ ob))
o→Fo .hom = unit.η _
o→Fo .preserves =
o→Fo .is-natural _ _ _
unit._∘_ refl (η-comonad-commute adj g-ff)
∙ ap₂ C(G.F-∘ _ _)
∙ sym .₁ (sym (F.F-∘ _ _) ·· ap F.₁ (alg .ν-unit) ·· F.F-id)
∙ ap G(ap₂ C._∘_ refl (sym (η-comonad-commute adj g-ff)) ∙ zag ∙ sym G.F-id)
∙ sym
: Comp.₀ (F.₀ ob) EM.≅ (ob , alg)
isom = EM.make-iso Fo→o o→Fo
isom (ext (alg .ν-unit))
(ext (
.is-natural _ _ _
unit._∘_ refl (η-comonad-commute adj g-ff)
·· ap₂ C(G.F-∘ _ _)
·· sym .₁ (sym (F.F-∘ _ _) ·· ap F.₁ (alg .ν-unit) ·· F.F-id)
·· ap G.F-id))
·· G
: is-equivalence Comp
eqv = ff+split-eso→is-equivalence comp-ff comp-seso eqv
Constructing reflective subcategories🔗
Earlier, we saw that any reflective subcategory has an invertible counit. We will now prove the converse: if the counit of an adjunction is invertible, then the left adjoint is a reflector.
Let be the (natural) inverse to the counit, and let We can obtain a map by conjugating with and its inverse.
: is-invertibleⁿ counit → is-reflective adj
is-counit-iso→is-reflective =
is-counit-iso→is-reflective counit-iso
is-iso→is-equiv $(λ f → ε _ D.∘ F.₁ f D.∘ ε⁻¹ _) iso
Proving that this conjugation forms an equivalence involves the usual adjoint yoga. For the forward direction, we need to show that if we take the right adjunct, this transforms our goal into
From here, we can repeatedly apply naturality to commute the all the way to the end of the chain of morphisms. This yields which is equal to as is an inverse.
(λ f → Equiv.injective (_ , R-adjunct-is-equiv adj) $
_ D.∘ F.₁ (G.₁ (ε _ D.∘ F.₁ f D.∘ ε⁻¹ _)) ≡⟨ FG.popl (counit .is-natural _ _ _) ⟩
ε (ε _ D.∘ ε _) D.∘ F.₁ (G.₁ (F.₁ f D.∘ ε⁻¹ _)) ≡⟨ D.extendr (FG.shufflel (counit .is-natural _ _ _)) ⟩
(ε _ D.∘ F.₁ f) D.∘ ε _ D.∘ F.₁ (G.₁ (ε⁻¹ _)) ≡⟨ D.elimr (counit .is-natural _ _ _ ∙ counit-iso.invr ηₚ _) ⟩
_ D.∘ F.₁ f ∎) ε
The reverse direction follows from a quick application of naturality.
(λ f →
_ D.∘ F.₁ (G.₁ f) D.∘ ε⁻¹ _ ≡⟨ D.pulll (counit.is-natural _ _ _) ⟩
ε (f D.∘ ε _) D.∘ ε⁻¹ _ ≡⟨ D.cancelr (counit-iso.invl ηₚ _) ⟩
)
f ∎where
module counit-iso = is-invertibleⁿ counit-iso
= counit-iso.inv .η ε⁻¹
Furthermore, if we have any natural isomorphism then the left adjoint is a reflector! To show this, we will construct an inverse to the counit; our previous result will then ensure that is fully faithful.
To begin, recall that isos have the 2-out-of-3 property, so it suffices to show that is invertible. Next, note that we can transfer the comonad structure on onto a comonad structure on by repeatedly composing with this yields a natural transformation that is a right inverse to
Finally, all natural transformations commute with one another, so is also a right inverse, and is invertible.
: (F F∘ G) ≅ⁿ Id → is-reflective adj
FG-iso→is-reflective =
FG-iso→is-reflective α
is-counit-iso→is-reflective $.invertible-cancell
[D,D]([D,D].iso→invertible (α [D,D].Iso⁻¹))
([D,D].make-invertible δ right-ident right-ident⁻¹)
where
module α = Isoⁿ α
: Id {C = D} => Id
δ .η x = α.to .η x D.∘ α.to .η (F.F₀ (G.₀ x)) D.∘ F.₁ (unit.η (G.₀ x)) D.∘ α.from .η x
δ .is-natural x y f =
δ .extendr (D.extendr (D.extendr (α.from .is-natural _ _ _)))
D.pushl (D.pushr (D.pushr (F.weave (unit .is-natural _ _ _))))
∙ D.pushl (D.pushr (α.to .is-natural _ _ _))
∙ D.pushl (α.to .is-natural _ _ _)
∙ D
: (counit ∘nt α.from) ∘nt δ ≡ idnt
right-ident = ext λ x →
right-ident .cancel-inner (α.invr ηₚ _)
D.pulll (sym $ α.to .is-natural _ _ _)
∙ D.cancel-inner (F.annihilate zag)
∙ D.invl ηₚ _
∙ α
: δ ∘nt (counit ∘nt α.from) ≡ idnt
right-ident⁻¹ = id-nat-commute δ (counit ∘nt α.from) ∙ right-ident right-ident⁻¹