module Cat.Diagram.Colimit.Representable where
Representability of colimits🔗
Since colimits are defined by universal property, we can also phrase the definition in terms of an equivalence between
Let be some diagram in If has a colimit then that means that maps out of are in bijection with a product of maps subject to some conditions.
: Functor C (Sets ℓ)
Lim[C[F-,=]] .F₀ c = el (Dia => Const c) Nat-is-set
Lim[C[F-,=]] .F₁ f α = constⁿ f ∘nt α
Lim[C[F-,=]] .F-id = ext λ _ _ → C.idl _
Lim[C[F-,=]] .F-∘ _ _ = ext λ _ _ → sym $ C.assoc _ _ _
Lim[C[F-,=]]
Hom-into-inj: ∀ {c : C.Ob} (eta : Dia => Const c)
→ Hom-from C c => Lim[C[F-,=]]
.η x f = constⁿ f ∘nt eta
Hom-into-inj eta .is-natural x y f = ext λ g _ →
Hom-into-inj eta .assoc _ _ _
sym $ C
represents→is-colimit: ∀ {c : C.Ob} {eta : Dia => Const c}
→ is-invertibleⁿ (Hom-into-inj eta)
→ is-colimit Dia c eta
{c} {eta} nat-inv = colim where
represents→is-colimit module nat-inv = is-invertibleⁿ nat-inv
: is-colimit Dia c eta
colim .σ {M} α =
colim (nat-inv.inv .η _ (to-coconeⁿ α))
!constⁿ .σ-comm {M} {α} = ext λ j → unext nat-inv.invl _ _ j
colim .σ-uniq {M} {α} {σ'} q = ext λ j →
colim .inv .η _ (to-coconeⁿ ⌜ α ⌝) ≡⟨ ap! q ⟩
nat-inv.inv .η _ ⌜ to-coconeⁿ ((σ' ◂ !F) ∘nt eta) ⌝ ≡⟨ ap! trivial! ⟩
nat-inv.inv .η _ ((!constⁿ (σ' .η tt) ◂ !F) ∘nt eta) ≡⟨ unext nat-inv.invr _ _ ⟩
nat-inv.η tt ∎ σ'