module Cat.Diagram.Colimit.Initial {o h} (C : Precategory o h) where

Initial objects are colimits🔗

An initial object is equivalently defined as a colimit of the empty diagram.

is-colimit→is-initial
  : ∀ {T : Ob} {eta : ¡F => Const T}
  → is-colimit {C = C} ¡F T eta
  → is-initial C T
is-colimit→is-initial colim Y = contr (colim.universal (λ ()) (λ ()))
                                      (λ _ → sym (colim.unique _ _ _ λ ()))
  where module colim = is-colimit colim

is-initial→is-colimit : ∀ {T : Ob} {F : Functor ⊥Cat C} → is-initial C T → is-colimit {C = C} F T ¡nt
is-initial→is-colimit {T} {F} init = to-is-colimitp mc λ {} where
  open make-is-colimit
  mc : make-is-colimit F T
  mc .ψ ()
  mc .commutes ()
  mc .universal _ _ = init _ .centre
  mc .factors {}
  mc .unique _ _ _ _ = sym (init _ .paths _)

Colimit→Initial : Colimit {C = C} ¡F → Initial C
Colimit→Initial colim .bot = Colimit.coapex colim
Colimit→Initial colim .has⊥ = is-colimit→is-initial (Colimit.has-colimit colim)

Initial→Colimit : ∀ {F : Functor ⊥Cat C} → Initial C → Colimit {C = C} F
Initial→Colimit init = to-colimit (is-initial→is-colimit (init .has⊥))