Monadic adjunctions🔗
An adjunction
between functors
and
is monadic if the induced comparison functor
(where the right-hand side is the Eilenberg-Moore category of the monad of the adjunction) is an
equivalence of categories.
module
Cat.Functor.Adjoint.Monadic
{o₁ h₁ o₂ h₂ : _}
{C : Precategory o₁ h₁}
{D : Precategory o₂ h₂}
{L : Functor C D} {R : Functor D C}
(L⊣R : L ⊣ R)
whereThe composition of R.₁ with the
adjunction counit natural
transformation gives R an Algebra structure, thus extending
R to a functor
Comparison : Functor D (Eilenberg-Moore C L∘R)
Comparison .F₀ x = R.₀ x , alg where
alg : Algebra-on C L∘R (R.₀ x)
alg .Algebra-on.ν = R.₁ (adj.counit.ε _)
alg .Algebra-on.ν-unit = adj.zag
alg .Algebra-on.ν-mult =
R.₁ (adj.counit.ε _) C.∘ M₁ (R.₁ (adj.counit.ε _)) ≡⟨ sym (R.F-∘ _ _) ⟩
R.₁ (adj.counit.ε _ D.∘ L.₁ (R.₁ (adj.counit.ε _))) ≡⟨ ap R.₁ (adj.counit.is-natural _ _ _) ⟩
R.₁ (adj.counit.ε x D.∘ adj.counit.ε (L.₀ (R.₀ x))) ≡⟨ R.F-∘ _ _ ⟩
R.₁ (adj.counit.ε x) C.∘ R.₁ (adj.counit.ε (L.₀ (R.₀ x))) ∎
Construction of the functorial action of Comparison
Comparison .F₁ x = hom where
open Algebra-hom
hom : Algebra-hom C _ _ _
hom .morphism = R.₁ x
hom .commutes =
R.₁ x C.∘ R.₁ (adj.counit.ε _) ≡⟨ sym (R.F-∘ _ _) ⟩
R.₁ (x D.∘ adj.counit.ε _) ≡⟨ ap R.₁ (sym (adj.counit.is-natural _ _ _)) ⟩
R.₁ (adj.counit.ε _ D.∘ L.₁ (R.₁ x)) ≡⟨ R.F-∘ _ _ ⟩
R.₁ (adj.counit.ε _) C.∘ M₁ (R.₁ x) ∎
Comparison .F-id = ext R.F-id
Comparison .F-∘ f g = ext (R.F-∘ _ _)An adjunction is monadic if Comparison is an equivalence of categories, thus
exhibiting
as the category of
is-monadic : Type _
is-monadic = is-equivalence Comparison