module Cat.Diagram.Terminal whereTerminal objects🔗
An object of a category is said to be terminal if it admits a unique map from any other object:
is-terminal : Ob → Type _
is-terminal ob = ∀ x → is-contr (Hom x ob)
record Terminal : Type (o ⊔ h) where
field
top : Ob
has⊤ : is-terminal topWe refer to the centre of contraction as !. Since it inhabits a contractible type,
it is unique.
! : ∀ {x} → Hom x top
! = has⊤ _ .centre
!-unique : ∀ {x} (h : Hom x top) → ! ≡ h
!-unique = has⊤ _ .paths
!-unique₂ : ∀ {x} (f g : Hom x top) → f ≡ g
!-unique₂ = is-contr→is-prop (has⊤ _)
open TerminalUniqueness🔗
If a category has two terminal objects and then there is a unique isomorphism We first establish the isomorphism: Since (resp. is terminal, there is a unique map (resp. To show these maps are inverses, we must show that is But these morphisms inhabit a contractible space, namely the space of maps into so they are equal.
!-invertible : (t1 t2 : Terminal) → is-invertible (! t1 {top t2})
!-invertible t1 t2 = make-invertible (! t2) (!-unique₂ t1 _ _) (!-unique₂ t2 _ _)
⊤-unique : (t1 t2 : Terminal) → top t1 ≅ top t2
⊤-unique t1 t2 = invertible→iso (! t2) (!-invertible t2 t1)Hence, if is additionally a category, it has a propositional space of terminal objects:
⊤-contractible : is-category C → is-prop Terminal
⊤-contractible ccat x1 x2 i .top =
ccat .to-path (⊤-unique x1 x2) i
⊤-contractible ccat x1 x2 i .has⊤ ob =
is-prop→pathp
(λ i → is-contr-is-prop {A = Hom _
(ccat .to-path (⊤-unique x1 x2) i)})
(x1 .has⊤ ob) (x2 .has⊤ ob) i
is-terminal-iso : ∀ {A B} → A ≅ B → is-terminal A → is-terminal B
is-terminal-iso isom term x = contr (isom .to ∘ term x .centre) λ h →
isom .to ∘ term x .centre ≡⟨ ap (isom .to ∘_) (term x .paths _) ⟩
isom .to ∘ isom .from ∘ h ≡⟨ cancell (isom .invl) ⟩
h ∎In terms of right adjoints🔗
We prove that the inclusion functor of an object of is right adjoint to the unique functor if and only if is terminal.
module _ (x : Ob) (term : is-terminal x) where
terminal→inclusion-is-right-adjoint : !F ⊣ const! {A = C} x
terminal→inclusion-is-right-adjoint =
hom-iso→adjoints (e _ .fst) (e _ .snd)
λ _ _ _ → term _ .paths _
where
e : ∀ y → ⊤ ≃ Hom y x
e y = is-contr→≃ (hlevel 0) (term y)
module _ (x : Ob) (adj : !F ⊣ const! {A = C} x) where
inclusion-is-right-adjoint→terminal : is-terminal x
inclusion-is-right-adjoint→terminal y = Equiv→is-hlevel 0
(Σ-contract (λ _ → hlevel 0) e⁻¹)
(R-adjunct-is-equiv adj .is-eqv _)