module Algebra.Group.Cat.Base where
The category of groups🔗
The category of groups, as the name implies, has its objects the
Groups
, with the
morphisms between them the group homomorphisms
.
open Group-on
open is-group-hom
: ∀ ℓ → Thin-structure ℓ Group-on
Group-structure .is-hom f G G' = el! (is-group-hom G G' f)
Group-structure â„“
.id-is-hom .pres-⋆ x y = refl
Group-structure ℓ .∘-is-hom f g α β .pres-⋆ x y =
Group-structure ℓ (β .pres-⋆ x y) ∙ α .pres-⋆ _ _
ap f
.id-hom-unique {s = s} {t = t} α β i =
Group-structure â„“ record
{ _⋆_ = λ x y → α .pres-⋆ x y i
; has-is-group =
(λ i → is-group-is-prop {_*_ = λ x y → α .pres-⋆ x y i})
is-prop→pathp (s .has-is-group)
(t .has-is-group)
i}
: ∀ ℓ → Precategory (lsuc ℓ) ℓ
Groups = Structured-objects (Group-structure â„“)
Groups â„“
: ∀ {ℓ} → is-category (Groups ℓ)
Groups-is-category = Structured-objects-is-category (Group-structure _)
Groups-is-category
instance
: ∀ {ℓ} → is-equational (Group-structure ℓ)
Groups-equational .is-equational.invert-id-hom x .pres-⋆ a b = sym (x .pres-⋆ a b)
Groups-equational
module Groups {â„“} = Cat (Groups â„“)
: ∀ ℓ → Type (lsuc ℓ)
Group _ = Groups.Ob
Group
: ∀ {ℓ} {A : Type ℓ} → make-group A → Group ℓ
to-group {A = A} mg = el A (mg .make-group.group-is-set) , (to-group-on mg) to-group
The underlying set🔗
The category of groups admits a faithful
functor into the category of
sets, written
which projects out the underlying set of the group. Faithfulness of this
functor says, in more specific words, that equality of group
homomorphisms can be tested by comparing the underlying morphisms of
sets.
: Functor (Groups â„“) (Sets â„“)
Grp↪Sets = Forget-structure (Group-structure _)
Grp↪Sets
: is-faithful (Grp↪Sets {ℓ})
Grp↪Sets-is-faithful = Structured-hom-path (Group-structure _) Grp↪Sets-is-faithful