Monadic adjunctionsπ
An adjunction
between functors
and
is monadic if the induced comparison functor
(where the right-hand side is the Eilenberg-Moore
category of the monad of the adjunction) is an
equivalence of categories.
module
.Functor.Adjoint.Monadic
Cat{oβ hβ oβ hβ : _}
{C : Precategory oβ hβ}
{D : Precategory oβ hβ}
{L : Functor C D} {R : Functor D C}
(Lβ£R : L β£ R)
where
The composition of R.β
with the
adjunction counit
natural
transformation gives R
an Algebra
structure, thus extending
R
to a functor
: Functor D (Eilenberg-Moore C LβR)
Comparison .Fβ x = R.β x , alg where
Comparison : Algebra-on C LβR (R.β x)
alg .Algebra-on.Ξ½ = R.β (adj.counit.Ξ΅ _)
alg .Algebra-on.Ξ½-unit = adj.zag
alg .Algebra-on.Ξ½-mult =
alg .β (adj.counit.Ξ΅ _) C.β Mβ (R.β (adj.counit.Ξ΅ _)) β‘β¨ sym (R.F-β _ _) β©
R.β (adj.counit.Ξ΅ _ D.β L.β (R.β (adj.counit.Ξ΅ _))) β‘β¨ ap R.β (adj.counit.is-natural _ _ _) β©
R.β (adj.counit.Ξ΅ x D.β adj.counit.Ξ΅ (L.β (R.β x))) β‘β¨ R.F-β _ _ β©
R.β (adj.counit.Ξ΅ x) C.β R.β (adj.counit.Ξ΅ (L.β (R.β x))) β R
Construction of the functorial action of Comparison
.Fβ x = hom where
Comparison open Algebra-hom
: Algebra-hom C _ _ _
hom .morphism = R.β x
hom .commutes =
hom .β x C.β R.β (adj.counit.Ξ΅ _) β‘β¨ sym (R.F-β _ _) β©
R.β (x D.β adj.counit.Ξ΅ _) β‘β¨ ap R.β (sym (adj.counit.is-natural _ _ _)) β©
R.β (adj.counit.Ξ΅ _ D.β L.β (R.β x)) β‘β¨ R.F-β _ _ β©
R.β (adj.counit.Ξ΅ _) C.β Mβ (R.β x) β
R.F-id = ext R.F-id
Comparison .F-β f g = ext (R.F-β _ _) Comparison
An adjunction is monadic if Comparison
is an equivalence of categories, thus
exhibiting
as the category of
: Type _
is-monadic = is-equivalence Comparison is-monadic