module 1Lab.Equiv.Fibrewise whereFibrewise equivalences🔗
In HoTT, a type family P : A → Type can be seen as a fibration
with total space Σ P, with the fibration being the
projection fst. Because of this, a
function with type (X : _) → P x → Q x can be referred as a
fibrewise map.
A function like this can be lifted to a function on total spaces:
total : ((x : A) → P x → Q x)
→ Σ A P → Σ A Q
total f (x , y) = x , f x yFurthermore, the fibres of total f correspond to fibres
of f, in the following manner:
total-fibres : {f : (x : A) → P x → Q x} {x : A} {v : Q x}
→ Iso (fibre (f x) v) (fibre (total f) (x , v))
total-fibres {A = A} {P = P} {Q = Q} {f = f} {x = x} {v = v} = the-iso where
open is-iso
to : {x : A} {v : Q x} → fibre (f x) v → fibre (total f) (x , v)
to (v' , p) = (_ , v') , λ i → _ , p i
from : {x : A} {v : Q x} → fibre (total f) (x , v) → fibre (f x) v
from ((x , v) , p) = transport (λ i → fibre (f (p i .fst)) (p i .snd)) (v , refl)
the-iso : {x : A} {v : Q x} → Iso (fibre (f x) v) (fibre (total f) (x , v))
the-iso .fst = to
the-iso .snd .is-iso.inv = from
the-iso .snd .is-iso.rinv ((x , v) , p) =
J (λ { _ p → to (from ((x , v) , p)) ≡ ((x , v) , p) })
(ap to (J-refl {A = Σ A Q} (λ { (x , v) _ → fibre (f x) v } ) (v , refl)))
p
the-iso .snd .is-iso.linv (v , p) =
J (λ { _ p → from (to (v , p)) ≡ (v , p) })
(J-refl {A = Σ A Q} (λ { (x , v) _ → fibre (f x) v } ) (v , refl))
pFrom this, we immediately get that a fibrewise transformation is an
equivalence iff. it induces an equivalence of total spaces by
total.
total→equiv : {f : (x : A) → P x → Q x}
→ is-equiv (total f)
→ {x : A} → is-equiv (f x)
total→equiv eqv {x} .is-eqv y =
iso→is-hlevel 0 (total-fibres .snd .is-iso.inv)
(is-iso.inverse (total-fibres .snd))
(eqv .is-eqv (x , y))
equiv→total : {f : (x : A) → P x → Q x}
→ ({x : A} → is-equiv (f x))
→ is-equiv (total f)
equiv→total always-eqv .is-eqv y =
iso→is-hlevel 0
(total-fibres .fst)
(total-fibres .snd)
(always-eqv .is-eqv (y .snd))