module Order.Semilattice.Meet where
Meet semilatticesπ
A meet semilattice is a partially ordered set which has all finite meets. This means, in particular, that it has a top element, since that is the meet of the empty family. Note that, even though meet-semilattices are presented as being equipped with a binary operation this is not actual structure on the partially-ordered set: meets are uniquely determined, so βbeing a meet-semilatticeβ is always a proposition.
record is-meet-semilattice {o β} (P : Poset o β) : Type (o β β) where
field
_β©_ : β P β β β P β β β P β
: β x y β is-meet P x y (x β© y)
β©-meets : Top P
has-top
infixr 25 _β©_
A homomorphism of meet-semilattices is a monotone function that sends finite meets to finite meets. In particular, it suffices to have and
since the converse direction of these inequalities is guaranteed by the universal properties.
record
is-meet-slat-hom{P : Poset o β} {Q : Poset o' β'} (f : Monotone P Q)
(P-slat : is-meet-semilattice P) (Q-slat : is-meet-semilattice Q)
: Type (o β β')
where
field
: β x y β (f # x) Qβ.β© (f # y) Q.β€ f # (x Pβ.β© y)
β©-β€ : Qβ.top Q.β€ f # Pβ.top top-β€
The category of meet-semilatticesπ
id-meet-slat-hom: β (Pβ : is-meet-semilattice P)
β is-meet-slat-hom idβ Pβ Pβ
{P = P} _ .β©-β€ _ _ = Poset.β€-refl P
id-meet-slat-hom {P = P} _ .top-β€ = Poset.β€-refl P
id-meet-slat-hom
β-meet-slat-hom: β {Pβ Qβ Rβ} {f : Monotone Q R} {g : Monotone P Q}
β is-meet-slat-hom f Qβ Rβ
β is-meet-slat-hom g Pβ Qβ
β is-meet-slat-hom (f ββ g) Pβ Rβ
{R = R} {f = f} {g = g} f-pres g-pres .β©-β€ x y =
β-meet-slat-hom .Poset.β€-trans (f-pres .β©-β€ (g # x) (g # y)) (f .pres-β€ (g-pres .β©-β€ x y))
R {R = R} {f = f} {g = g} f-pres g-pres .top-β€ =
β-meet-slat-hom .Poset.β€-trans (f-pres .top-β€) (f .pres-β€ (g-pres .top-β€)) R
: β o β β Subcat (Posets o β) (o β β) (o β β)
Meet-slats-subcat .Subcat.is-ob = is-meet-semilattice
Meet-slats-subcat o β .Subcat.is-hom = is-meet-slat-hom
Meet-slats-subcat o β .Subcat.is-hom-prop _ _ _ = hlevel 1
Meet-slats-subcat o β .Subcat.is-hom-id = id-meet-slat-hom
Meet-slats-subcat o β .Subcat.is-hom-β = β-meet-slat-hom
Meet-slats-subcat o β
: β o β β Precategory (lsuc o β lsuc β) (o β β)
Meet-slats = Subcategory (Meet-slats-subcat o β) Meet-slats o β
module Meet-slats {o} {β} = Cat.Reasoning (Meet-slats o β)
: β o β β Type _
Meet-semilattice = Meet-slats.Ob {o} {β} Meet-semilattice o β