module Cat.Instances.StrictCat whereThe category of strict categories🔗
Recall that a precategory is said strict
if its space of objects is a Set. While general
precategories are too homotopically interesting to fit into a Precategory (because functor spaces will
not, in general, be h-sets), the strict categories do form a
precategory, which we denote
Strict-cats : ∀ o h → Precategory _ _
Strict-cats o h .Ob = Σ[ C ∈ Precategory o h ] (is-strict C)
Strict-cats o h .Hom (C , _) (D , _) = Functor C D
Strict-cats o h .id = Id
Strict-cats o h ._∘_ = _F∘_
Strict-cats o h .idr _ = Functor-path (λ _ → refl) λ _ → refl
Strict-cats o h .idl _ = Functor-path (λ _ → refl) λ _ → refl
Strict-cats o h .assoc _ _ _ = Functor-path (λ _ → refl) λ _ → reflThis assembles into a Precategory because the only bit of a
Functor that doesn’t have a fixed
h-level is the object mapping; By asking that D be a strict category, this fixes the
functors to be sets.
Strict-cats o h .Hom-set _ (D , dset) = Functor-is-set dsetProducts🔗
We prove that Strict-cats has
products. This is because
is
and h-levels are closed under products.
Strict-cats-products
: {C D : Precategory o h}
→ (cob : is-set (Ob C)) (dob : is-set (Ob D))
→ Product (Strict-cats o h) (C , cob) (D , dob)
Strict-cats-products {C = C} {D = D} cob dob = prod where
prod : Product (Strict-cats _ _) (C , cob) (D , dob)
prod .apex = C ×ᶜ D , ×-is-hlevel 2 cob dob
prod .π₁ = Fst {C = C} {D = D}
prod .π₂ = Snd {C = C} {D = D}
prod .has-is-product .⟨_,_⟩ p q = Cat⟨ p , q ⟩
prod .has-is-product .π₁∘factor = Functor-path (λ _ → refl) λ _ → refl
prod .has-is-product .π₂∘factor = Functor-path (λ _ → refl) λ _ → refl
prod .has-is-product .unique other p q =
Functor-path (λ x i → F₀ (p i) x , F₀ (q i) x) λ f i → F₁ (p i) f , F₁ (q i) f