module Cat.Instances.Sets where
The category of Sets🔗
We prove that the category of Sets is univalent. Recall
that this means that, fixing a set
the type
is contractible. We first exhibit a contraction directly, using ua
, and then provide an alternative proof
in terms of univalence for
.
Direct proof🔗
The direct proof is surprisingly straightforward, in particular
because the heavy lifting is done by a plethora of existing lemmas:
Iso→Equiv
to turn an isomorphism
into an equivalence, path→ua-pathp
to reduce dependent paths over ua
to non-dependent paths, ≅-pathp
to
characterise dependent paths in _≅_
,
etc.
module _ {ℓ} where
import Cat.Reasoning (Sets ℓ) as Sets
We must first rearrange _≅_
to _≃_
,
for which we can use Iso→Equiv
. We
must then show that an isomorphism in the category of Sets is the same
thing as an isomorphism of types; But the only difference between these
types can be patched by happly
/funext
.
: {A B : Set ℓ} → A Sets.≅ B → ∣ A ∣ ≃ ∣ B ∣
iso→equiv .fst = x .Sets.to
iso→equiv x .snd = is-iso→is-equiv $ iso x.from (happly x.invl) (happly x.invr)
iso→equiv x where module x = Sets._≅_ x
Using univalence for function extensionality and the computation rule for univalence, it is almost trivial to show that categorical isomorphisms of sets are an identity system.
: is-category (Sets ℓ)
Sets-is-category .to-path i = n-ua (iso→equiv i)
Sets-is-category .to-path-over p = Sets.≅-pathp refl _ $
Sets-is-category λ a → path→ua-pathp _ refl funextP
Indirect proof🔗
While the proof above is fairly simple, we can give a
different formulation, which might be more intuitive. Let’s start by
showing that the rearrangement iso→equiv
is an equivalence:
: {A B : Set ℓ} → ∣ A ∣ ≃ ∣ B ∣ → A Sets.≅ B
equiv→iso (f , f-eqv) = Sets.make-iso f
equiv→iso (equiv→inverse f-eqv)
(funext (equiv→counit f-eqv))
(funext (equiv→unit f-eqv))
: {A B : Set ℓ} → (A Sets.≅ B) ≃ (∣ A ∣ ≃ ∣ B ∣)
equiv≃iso {A} {B} = Iso→Equiv (iso→equiv , iso equiv→iso p q) where
equiv≃iso : is-right-inverse (equiv→iso {A} {B}) iso→equiv
p = trivial!
p x
: is-left-inverse (equiv→iso {A} {B}) iso→equiv
q = trivial! q x
We then use univalence for to directly establish that
: ∀ {A B : Set ℓ} → (A ≡ B) ≃ (A Sets.≅ B)
is-category'-Sets {A} {B} =
is-category'-Sets (A ≡ B) ≃⟨ n-univalence e⁻¹ ⟩
(∣ A ∣ ≃ ∣ B ∣) ≃⟨ equiv≃iso e⁻¹ ⟩
(A Sets.≅ B) ≃∎
Sets^op is also a category🔗
import Cat.Reasoning (Sets ℓ ^op) as Sets^op
First we show that isomorphism is invariant under ^op
.
: ∀ {A B : Set ℓ} → (A Sets^op.≅ B) ≃ (A Sets.≅ B)
iso-op-invariant {A} {B} = Iso→Equiv the-iso
iso-op-invariant where
open import Cat.Morphism
open Inverses
: Iso (A Sets^op.≅ B) (A Sets.≅ B)
the-iso .fst i .to = i .from
the-iso .fst i .from = i .to
the-iso .fst i .inverses .invl = i .invl
the-iso .fst i .inverses .invr = i .invr
the-iso .snd .is-iso.inv i .to = i .from
the-iso .snd .is-iso.inv i .from = i .to
the-iso .snd .is-iso.inv i .inverses .invl = i .invl
the-iso .snd .is-iso.inv i .inverses .invr = i .invr
the-iso .snd .is-iso.rinv _ = refl
the-iso .snd .is-iso.linv _ = refl the-iso
This fact lets us re-use the to-path
component of Sets-is-category
. Some calculation gives
us to-path-over
.
: is-category (Sets ℓ ^op)
Sets^op-is-category .to-path = Sets-is-category .to-path ⊙ transport (ua iso-op-invariant)
Sets^op-is-category .to-path-over {a} {b} p = Sets^op.≅-pathp refl _ $ funext-dep λ {x₀} {x₁} q →
Sets^op-is-category (_$ x₀) p.invr ⟩
x₀ ≡˘⟨ ap .to ⌜ p.from x₀ ⌝ ≡˘⟨ ap¡ Regularity.reduce! ⟩
p.to ⌜ transport refl $ p.from $ transport refl x₀ ⌝ ≡⟨ ap! (λ i → unglue (∂ i) (q i)) ⟩
p.to x₁ ∎
pwhere module p = Sets^op._≅_ p