module Order.Lattice.Distributive {o ℓ} {P : Poset o ℓ} (l : is-lattice P) where
Distributive lattices🔗
A distributive lattice, as the name implies, is a lattice where the operations of meet and join distribute over each other: that is, for any triple of elements ,
Rather remarkably, it turns out that either equation implies the other. We provide a pair of parametrised modules which quantifies over one of the equations and proves the other. For convenience, these modules also define distributivity on the right, too; this is a consequence of both meets and joins being commutative operators.
module from-∩ (∩-distribl : ∀ {x y z} → x ∩ (y ∪ z) ≡ (x ∩ y) ∪ (x ∩ z)) where abstract
: ∀ {x y z} → (y ∪ z) ∩ x ≡ (y ∩ x) ∪ (z ∩ x)
∩-distribr = ∩-comm ·· ∩-distribl ·· ap₂ _∪_ ∩-comm ∩-comm
∩-distribr
: ∀ {x y z} → x ∪ (y ∩ z) ≡ (x ∪ y) ∩ (x ∪ z)
∪-distribl {x} {y} {z} = sym $
∪-distribl (x ∪ y) ∩ (x ∪ z) ≡⟨ ∩-distribl ⟩
((x ∪ y) ∩ x) ∪ ((x ∪ y) ∩ z) ≡⟨ ap₂ _∪_ ∩-absorbr refl ⟩
((x ∪ y) ∩ z) ≡⟨ ap₂ _∪_ refl ∩-distribr ⟩
x ∪ (x ∩ z ∪ y ∩ z) ≡⟨ ∪-assoc ⟩
x ∪ (x ∪ x ∩ z) ∪ (y ∩ z) ≡⟨ ap₂ _∪_ ∪-absorbl refl ⟩
(y ∩ z) ∎
x ∪
: ∀ {x y z} → (y ∩ z) ∪ x ≡ (y ∪ x) ∩ (z ∪ x)
∪-distribr = ∪-comm ·· ∪-distribl ·· ap₂ _∩_ ∪-comm ∪-comm ∪-distribr
The construction assuming that join distributes over meet is formally dual.
module from-∪ (∪-distribl : ∀ {x y z} → x ∪ (y ∩ z) ≡ (x ∪ y) ∩ (x ∪ z)) where abstract
: ∀ {x y z} → (y ∩ z) ∪ x ≡ (y ∪ x) ∩ (z ∪ x)
∪-distribr = ∪-comm ·· ∪-distribl ·· ap₂ _∩_ ∪-comm ∪-comm
∪-distribr
: ∀ {x y z} → x ∩ (y ∪ z) ≡ (x ∩ y) ∪ (x ∩ z)
∩-distribl {x} {y} {z} = sym $
∩-distribl (x ∩ y) ∪ (x ∩ z) ≡⟨ ∪-distribl ⟩
((x ∩ y) ∪ x) ∩ ((x ∩ y) ∪ z) ≡⟨ ap₂ _∩_ ∪-absorbr refl ⟩
((x ∩ y) ∪ z) ≡⟨ ap₂ _∩_ refl ∪-distribr ⟩
x ∩ (x ∪ z) ∩ (y ∪ z) ≡⟨ ∩-assoc ⟩
x ∩ (x ∩ (x ∪ z)) ∩ (y ∪ z) ≡⟨ ap₂ _∩_ ∩-absorbl refl ⟩
(y ∪ z) ∎
x ∩
: ∀ {x y z} → (y ∪ z) ∩ x ≡ (y ∩ x) ∪ (z ∩ x)
∩-distribr = ∩-comm ·· ∩-distribl ·· ap₂ _∪_ ∩-comm ∩-comm ∩-distribr
As a further weakening of the preconditions, it turns out that it suffices for distributivity to hold as an inequality, in the direction
since the other direction always holds in a lattice.
distrib-le→∩-distribl: (∀ {x y z} → x ∩ (y ∪ z) ≤ (x ∩ y) ∪ (x ∩ z))
→ ∀ {x y z} → x ∩ (y ∪ z) ≡ (x ∩ y) ∪ (x ∩ z)
= ≤-antisym ∩-∪-distrib≤ ∪-∩-distribl-≤ distrib-le→∩-distribl ∩-∪-distrib≤