module Order.Diagram.Top {o â„“} (P : Poset o â„“) where
Top elements🔗
A top element in a partial order is an element that is larger than any other element in . This is the same as being a greatest lower bound for the empty family .
: Ob → Type _
is-top = ∀ x → x ≤ top
is-top top
record Top : Type (o ⊔ ℓ) where
field
: Ob
top : is-top top
has-top
: ∀ {x} → x ≤ top
! = has-top _
!
: ∀ {glb} {f : ⊥ → _} → is-top glb → is-glb P f glb
is-top→is-glb .greatest x _ = is-top x
is-top→is-glb is-top
: ∀ {glb} {f : ⊥ → _} → is-glb P f glb → is-top glb
is-glb→is-top = glb .greatest x λ () is-glb→is-top glb x
As terminal objects🔗
Bottoms are the decategorifcation of terminal objects; we don’t need to require the uniqueness of the universal morphism, as we’ve replaced our hom-sets with hom-props!
: ∀ {x} → is-top x → is-terminal (poset→category P) x
is-top→terminal .centre = is-top x
is-top→terminal is-top x .paths _ = ≤-thin _ _
is-top→terminal is-top x
: ∀ {x} → is-terminal (poset→category P) x → is-top x
terminal→is-top = terminal x .centre terminal→is-top terminal x