module Order.Diagram.Bottom {o â„“} (P : Poset o â„“) where
Bottom elements🔗
A bottom element in a partial order is an element that is smaller than any other element of . This is the same as being a least upper upper bound for the empty family .
: Ob → Type _
is-bottom = ∀ x → bot ≤ x
is-bottom bot
record Bottom : Type (o ⊔ ℓ) where
no-eta-equality
field
: Ob
bot : is-bottom bot
has-bottom
: ∀ {x} → bot ≤ x
¡ = has-bottom _
¡
: ∀ {lub} {f : ⊥ → _} → is-bottom lub → is-lub P f lub
is-bottom→is-lub .least x _ = is-bot x
is-bottom→is-lub is-bot
: ∀ {lub} {f : ⊥ → _} → is-lub P f lub → is-bottom lub
is-lub→is-bottom = lub .least x λ () is-lub→is-bottom lub x
As initial objects🔗
Bottoms are the decategorifcation of initial objects; we don’t need to require the uniqueness of the universal morphism, as we’ve replaced our hom-sets with hom-props!
: ∀ {x} → is-bottom x → is-initial (poset→category P) x
is-bottom→initial .centre = is-bot x
is-bottom→initial is-bot x .paths _ = ≤-thin _ _
is-bottom→initial is-bot x
: ∀ {x} → is-initial (poset→category P) x → is-bottom x
initial→is-bottom = initial x .centre initial→is-bottom initial x