module Cat.Functor.WideSubcategory where
Wide subcategories🔗
A wide subcategory is specified by a predicate on the morphisms of , rather than one on the objects. Since is nontrivial, we must take care that the result actually form a category: must contain the identities and be closed under composition.
To start, we package up all the data required to define a wide subcategory up into a record.
record Wide-subcat (ℓ : Level) : Type (o ⊔ h ⊔ lsuc ℓ) where
no-eta-equality
field
: ∀ {x y} → C.Hom x y → Type ℓ
P : ∀ {x y} (f : C.Hom x y) → is-prop (P f)
P-prop
: ∀ {x} → P (C.id {x})
P-id : ∀ {x y z} {f : C.Hom y z} {g : C.Hom x y}
P-∘ → P f → P g → P (f C.∘ g)
Morphisms of wide subcategories are defined as morphisms in where holds.
record Wide-hom (W : Wide-subcat C ℓ) (x y : C.Ob) : Type (h ⊔ ℓ) where
no-eta-equality
constructor wide
field
: C.Hom x y
hom : hom ∈ W witness
We can then use this data to construct a category.
: ∀ {ℓ} → Wide-subcat C ℓ → Precategory o (h ⊔ ℓ)
Wide .Ob = C.Ob
Wide sub .Hom = Wide-hom sub
Wide sub .Hom-set _ _ = hlevel 2
Wide sub
.id .hom = C.id
Wide sub .id .witness = sub .P-id
Wide sub
._∘_ f g .hom = f .hom C.∘ g .hom
Wide sub ._∘_ f g .witness = sub .P-∘ (f .witness) (g .witness)
Wide sub
.idr _ = ext $ C.idr _
Wide sub .idl _ = ext $ C.idl _
Wide sub .assoc _ _ _ = ext $ C.assoc _ _ _ Wide sub
From split essentially surjective inclusions🔗
There is another way of representing wide subcategories: By giving a pseudomonic split essential surjection .
We construct the wide subcategory by restricting to the morphisms in that lie in the image of . Since is a faithful functor, this is indeed a proposition.
: Precategory _ _
Split-eso-inclusion→Wide-subcat = Wide sub where
Split-eso-inclusion→Wide-subcat : Wide-subcat C (h ⊔ h')
sub .P {x = x} {y = y} f =
sub .Hom (eso x .fst) (eso y .fst) ]
Σ[ g ∈ D(eso.to y C.∘ F₁ g C.∘ eso.from x ≡ f)
.P-prop {x} {y} f (g , p) (g' , q) =
sub (λ _ → C.Hom-set _ _ _ _) $
Σ-prop-path .faithful pseudomonic $
is-pseudomonic.iso→epic (eso x .snd C.Iso⁻¹) _ _ $
C.iso→monic (eso y .snd) _ _ (p ∙ sym q)
C.P-id {x} =
sub (D.id , ap₂ C._∘_ refl (C.eliml F-id) ∙ C.invl (eso x .snd))
.P-∘ {x} {y} {z} {f} {g} (f' , p) (g' , q) =
sub .∘ g' , (
f' D.to z C.∘ F₁ (f' D.∘ g') C.∘ eso.from x ≡⟨ C.push-inner (F-∘ f' g') ⟩
eso(eso.to z C.∘ F₁ f') C.∘ (F₁ g' C.∘ eso.from x) ≡⟨ C.insert-inner (eso.invr y) ⟩
((eso.to z C.∘ F₁ f') C.∘ eso.from y) C.∘ (eso.to y C.∘ F₁ g' C.∘ eso.from x) ≡⟨ ap₂ C._∘_ (sym (C.assoc _ _ _) ∙ p) q ⟩
.∘ g ∎) f C
This canonical wide subcategory is equivalent to .
: Functor (Split-eso-inclusion→Wide-subcat) D
Wide-subcat→Split-eso-domain .Functor.F₀ x = eso x .fst
Wide-subcat→Split-eso-domain .Functor.F₁ f = f .witness .fst
Wide-subcat→Split-eso-domain .Functor.F-id = refl
Wide-subcat→Split-eso-domain .Functor.F-∘ _ _ = refl
Wide-subcat→Split-eso-domain
: is-fully-faithful Wide-subcat→Split-eso-domain
is-fully-faithful-Wide-subcat→domain = is-iso→is-equiv $ iso
is-fully-faithful-Wide-subcat→domain (λ f → wide (eso.to _ C.∘ F₁ f C.∘ eso.from _) (f , refl))
(λ _ → refl)
(λ f → ext (f .witness .snd))
: is-split-eso Wide-subcat→Split-eso-domain
is-eso-Wide-subcat→domain =
is-eso-Wide-subcat→domain x (eso (F₀ x) .snd) F₀ x , pseudomonic→essentially-injective pseudomonic
We did cheat a bit earlier when defining wide subcategories: our predicate isn’t required to respect isomorphisms! This means that we could form a “subcategory” that kills off all the isomorphisms, which allows us to distinguish between isomorphic objects. Therefore, wide subcategories are not invariant under equivalence of categories.
This in turn means that the forgetful functor from a wide subcategory is not pseudomonic! To ensure that it is, we need to require that the predicate holds on all isomorphisms. Arguably this is something that should be part of the definition of a wide subcategory, but it isn’t strictly required, so we opt to leave it as a side condition.
: Functor (Wide C sub) C
Forget-wide-subcat .Functor.F₀ x = x
Forget-wide-subcat .Functor.F₁ f = f .hom
Forget-wide-subcat .Functor.F-id = refl
Forget-wide-subcat .Functor.F-∘ _ _ = refl
Forget-wide-subcat
: is-faithful Forget-wide-subcat
is-faithful-Forget-wide-subcat = Wide-hom-path
is-faithful-Forget-wide-subcat
is-pseudomonic-Forget-wide-subcat: (P-invert : ∀ {x y} {f : C.Hom x y} → C.is-invertible f → f ∈ sub)
→ is-pseudomonic Forget-wide-subcat
.is-pseudomonic.faithful =
is-pseudomonic-Forget-wide-subcat P-invert
is-faithful-Forget-wide-subcat.is-pseudomonic.isos-full f =
is-pseudomonic-Forget-wide-subcat P-invert
pure $.make-iso
Wide(wide f.to (P-invert (C.iso→invertible f)))
(wide f.from (P-invert (C.iso→invertible (f C.Iso⁻¹))))
(ext f.invl)
(ext f.invr) ,
.≅-pathp refl refl refl
Cwhere module f = C._≅_ f
: is-split-eso Forget-wide-subcat
is-split-eso-Forget-wide-subcat = y , C.id-iso is-split-eso-Forget-wide-subcat y