module Cat.Diagram.Equaliser {β β'} (C : Precategory β β') whereEqualisersπ
The equaliser of two maps , when it exists, represents the largest subobject of where and agree. In this sense, the equaliser is the categorical generalisation of a solution set: The solution set of an equation in one variable is largest subset of the domain (i.e.Β what the variable ranges over) where the left- and right-hand-sides agree.
record is-equaliser {E} (f g : Hom A B) (equ : Hom E A) : Type (β β β') where
  field
    equal     : f β equ β‘ g β equ
    universal : β {F} {e' : Hom F A} (p : f β e' β‘ g β e') β Hom F E
    factors   : β {F} {e' : Hom F A} {p : f β e' β‘ g β e'} β equ β universal p β‘ e'
    unique
      : β {F} {e' : Hom F A} {p : f β e' β‘ g β e'} {other : Hom F E}
      β equ β other β‘ e'
      β other β‘ universal p
  equal-β : f β equ β h β‘ g β equ β h
  equal-β {h = h} =
    f β equ β h β‘β¨ extendl equal β©
    g β equ β h β
  uniqueβ
    : β {F} {e' : Hom F A}  {o1 o2 : Hom F E}
    β f β e' β‘ g β e'
    β equ β o1 β‘ e'
    β equ β o2 β‘ e'
    β o1 β‘ o2
  uniqueβ p q r = unique {p = p} q β sym (unique r)We can visualise the situation using the commutative diagram below:
There is also a convenient bundling of an equalising arrow together with its domain:
record Equaliser (f g : Hom A B) : Type (β β β') where
  field
    {apex}  : Ob
    equ     : Hom apex A
    has-is-eq : is-equaliser f g equ
  open is-equaliser has-is-eq publicEqualisers are monicπ
As a small initial application, we prove that equaliser arrows are always monic:
is-equaliserβis-monic
  : β {E} (equ : Hom E A)
  β is-equaliser f g equ
  β is-monic equ
is-equaliserβis-monic equ equalises g h p =
  uniqueβ (extendl equal) p refl
  where open is-equaliser equalisesCategories with all equalisersπ
We also define a helper module for working with categories that have equalisers of all parallel pairs of morphisms.
has-equalisers : Type _
has-equalisers = β {a b} (f g : Hom a b) β Equaliser f g
module Equalisers (all-equalisers : has-equalisers) where
  module equaliser {a b} (f g : Hom a b) = Equaliser (all-equalisers f g)
  Equ : β {a b} (f g : Hom a b) β Ob
  Equ = equaliser.apex