module Cat.Diagram.Equaliser.Kernel {o ℓ} (C : Precategory o ℓ) where
Kernels🔗
In a category with equalisers and a zero object , a kernel of a morphism is an equaliser of and the zero morphism , hence a subobject of the domain of .
module _ (∅ : Zero) where
open Zero ∅
: ∀ {a b ker} (f : Hom a b) (k : Hom ker a) → Type _
is-kernel = is-equaliser f zero→
is-kernel f
kernels-are-subobjects: ∀ {a b ker} {f : Hom a b} (k : Hom ker a)
→ is-kernel f k → is-monic k
= is-equaliser→is-monic
kernels-are-subobjects
record Kernel {a b} (f : Hom a b) : Type (o ⊔ ℓ) where
field
{ker} : Ob
: Hom ker a
kernel : is-kernel f kernel
has-is-kernel open is-equaliser has-is-kernel public
Lemma: Let be a category with equalisers and a zero object. In , the kernel of a kernel is zero. First, note that if a category has a choice of zero object and a choice of equaliser for any pair of morphisms, then it has canonically-defined choices of kernels:
module Canonical-kernels
(zero : Zero) (eqs : ∀ {a b} (f g : Hom a b) → Equaliser f g) where
open Zero zero
open Kernel
: ∀ {a b} (f : Hom a b) → Kernel zero f
Ker .ker = _
Ker f .kernel = eqs f zero→ .Equaliser.equ
Ker f .has-is-kernel = eqs _ _ .Equaliser.has-is-eq Ker f
We now show that the maps and are inverses. In one direction the composite is in , so it is trivially unique. In the other direction, we have maps , which, since is a limit, are uniquely determined if they are cone homomorphisms.
: ∀ {a b} (f : Hom a b) → Ker (Ker f .kernel) .ker ≅ ∅
Ker-of-ker≃∅ = make-iso ! ¡ (!-unique₂ _ _) p where
Ker-of-ker≃∅ f module Kf = Kernel (Ker f)
module KKf = Kernel (Ker (Ker f .kernel))
The calculation is straightforward enough: The hardest part is showing that (here we are talking about the inclusion maps, not the objects) — but recall that equalises and , so we have
: ¡ ∘ ! ≡ id
p = KKf.unique₂ (zero-comm _ _) (zero-∘l _)
p (Kf.unique₂ (extendl (zero-comm _ _))
(pulll KKf.equal ∙ idr _)
(zero-comm _ _))