module Cat.Instances.Product where

Product categories🔗

Let C\mathcal{C} and D\mathcal{D} be two precategories; we put no restrictions on their relative sizes. Their product category C×cD\mathcal{C} \times^c \mathcal{D} is the category having as object pairs (x,y)(x, y) of an object x:Cx : \mathcal{C} and y:Dy : \mathcal{D}, and the morphisms are pairs (f,g)(f, g) of a morphism in C\mathcal{C} and a morphism in D\mathcal{D}. The product category admits two projection functors

Cπ1(C×cD)π2D, \mathcal{C} \xleftarrow{\pi_1} (\mathcal{C} \times^c \mathcal{D}) \xrightarrow{\pi_2} \mathcal{D}\text{,}

satisfying a universal property analogous to those of product diagrams in categories. Namely, given a setup like in the diagram below, there is a unique1 functor which fits into the dashed line and makes the whole diagram commute.

Formulating this universal property properly would take us further afield into 2-category theory than is appropriate here.

_×ᶜ_ : Precategory o₁ h₁  Precategory o₂ h₂  Precategory _ _
C ×ᶜ D = prodcat module ×ᶜ where
  module C = Precategory C
  module D = Precategory D

  prodcat : Precategory _ _
  prodcat .Ob = Ob C × Ob D
  prodcat .Hom (a , a') (b , b') = Hom C a b × Hom D a' b'
  prodcat .Hom-set (a , a') (b , b') = hlevel!
  prodcat .id = id C , id D
  prodcat .__ (f , f') (g , g') = f C.∘ g , f' D.∘ g'
  prodcat .idr (f , f') i = C.idr f i , D.idr f' i
  prodcat .idl (f , f') i = C.idl f i , D.idl f' i
  prodcat .assoc (f , f') (g , g') (h , h') i =
    C.assoc f g h i , D.assoc f' g' h' i

{-# DISPLAY ×ᶜ.prodcat a b = a ×ᶜ b #-}
infixr 20 _×ᶜ_

We define the two projection functors C×DC\mathcal{C} \times \mathcal{D} \to \mathcal{C} (resp D\to \mathcal{D}) as the evident liftings of the fst and snd operations from the product type. Functoriality is automatic because composites (and identities) are defined componentwise in the product category.

Fst : Functor (C ×ᶜ D) C
Fst .F₀ = fst
Fst .F₁ = fst
Fst .F-id = refl
Fst .F-∘ _ _ = refl

Snd : Functor (C ×ᶜ D) D
Snd .F₀ = snd
Snd .F₁ = snd
Snd .F-id = refl
Snd .F-∘ _ _ = refl

Cat⟨_,_: Functor E C  Functor E D  Functor E (C ×ᶜ D)
Cat⟨ F , G ⟩ = f where
  f : Functor _ _
  f .F₀ x = F₀ F x , F₀ G x
  f .F₁ f = F₁ F f , F₁ G f
  f .F-id i = F-id F i , F-id G i
  f .F-∘ f g i = F-∘ F f g i , F-∘ G f g i

__ : Functor B D  Functor C E  Functor (B ×ᶜ C) (D ×ᶜ E)
__ {B = B} {D = D} {C = C} {E = E} G H = func
  modulewhere

  func : Functor (B ×ᶜ C) (D ×ᶜ E)
  func .F₀ (x , y) = (G .F₀ x) , (H .F₀ y)
  func .F₁ (f , g) = (G .F₁ f) , (H .F₁ g)
  func .F-id = (G .F-id) ,ₚ (H .F-id)
  func .F-∘ (f , g) (f' , g') = (G .F-∘ f f') ,ₚ H .F-∘ g g'

Univalence🔗

Isomorphisms in functor categories admit a short description, too: They are maps which are componentwise isomorphisms. It follows, since paths in product types are products of paths in the component types, that the product of univalent categories is itself a univalent category.

    ×ᶜ-is-category : is-category (C ×ᶜ D)
    ×ᶜ-is-category .to-path im =
      Σ-pathp (C.iso→path (F-map-iso Fst im)) (D.iso→path (F-map-iso Snd im))
    ×ᶜ-is-category .to-path-over p = C*D.≅-pathp _ _ $
      Σ-pathp (Univalent.Hom-pathp-reflr-iso c-cat (C.idr _))
                  (Univalent.Hom-pathp-reflr-iso d-cat (D.idr _))

  1. When C\mathcal{C} and D\mathcal{D} are precategories, this functor is only unique up to a natural isomorphism↩︎