module Cat.Instances.Elements.Covariant {o β s} (C : Precategory o β)
(P : Functor C (Sets s)) where
The covariant category of elementsπ
While the category of elements comes up most often in the context of presheaves (i.e., contravariant functors into ), the construction makes sense for covariant functors as well.
Sadly, we cannot simply reuse the contravariant construction, instantiating as : the resulting category would be the opposite of what we want. Indeed, in both the covariant and contravariant cases, we want the projection to be covariant.
Thus we proceed to dualise the whole construction.
record Element : Type (o β s) where
constructor elem
field
: Ob
ob : β£ P.β ob β£
section
open Element
record Element-hom (x y : Element) : Type (β β s) where
constructor elem-hom
no-eta-equality
field
: Hom (x .ob) (y .ob)
hom : P.β hom (x .section) β‘ y .section
commute
open Element-hom
: {x y : Element} {f g : Element-hom x y} β f .hom β‘ g .hom β f β‘ g
Element-hom-path .hom = p i
Element-hom-path p i {x = x} {y = y} {f = f} {g = g} p i .commute =
Element-hom-path (Ξ» j β P.β (y .ob) .is-tr (P.β (p j) (x .section)) (y .section))
is-propβpathp (f .commute)
(g .commute) i
private unquoteDecl eqv = declare-record-iso eqv (quote Element-hom)
: β (x y : Element) β is-set (Element-hom x y)
Element-hom-is-set = Isoβis-hlevel 2 eqv T-is-set where
Element-hom-is-set x y : is-set _
T-is-set = hlevel!
T-is-set
: Precategory (o β s) (β β s)
β« .Precategory.Ob = Element
β« .Precategory.Hom = Element-hom
β« .Precategory.Hom-set = Element-hom-is-set
β« .Precategory.id {x = x} = elem-hom id Ξ» i β P.F-id i (x .section)
β« .Precategory._β_ {x = x} {y = y} {z = z} f g = elem-hom (f .hom β g .hom) comm
β« where
abstract
: P.β (f .hom β g .hom) (x .section) β‘ z .section
comm =
comm .β (f .hom β g .hom) (x .section) β‘β¨ happly (P.F-β (f .hom) (g .hom)) (x .section) β©
P.β (f .hom) (P.β (g .hom) (x .section)) β‘β¨ ap (P.Fβ (f .hom)) (g .commute) β©
P.β (f .hom) (y .section) β‘β¨ f .commute β©
P.section β
z .Precategory.idr f = Element-hom-path (idr (f .hom))
β« .Precategory.idl f = Element-hom-path (idl (f .hom))
β« .Precategory.assoc f g h = Element-hom-path (assoc (f .hom) (g .hom) (h .hom))
β«
: Functor β« C
Οβ .Fβ x = x .ob
Οβ .Fβ f = f .hom
Οβ .F-id = refl
Οβ .F-β f g = refl Οβ
We can now relate the two constructions: the covariant category of elements of is the opposite of the contravariant category of elements of seen as a contravariant functor on (thus a functor ).
: β« β‘ Contra.β« (C ^op) P ^op
co-β« = Precategory-path F F-is-precat-iso where
co-β« : Functor β« (Contra.β« (C ^op) P ^op)
F .Fβ e = Contra.elem (e .ob) (e .section)
F .Fβ h = Contra.elem-hom (h .hom) (h .commute)
F .F-id = refl
F .F-β _ _ = Contra.Element-hom-path _ _ refl
F
: is-precat-iso F
F-is-precat-iso .is-precat-iso.has-is-iso = is-isoβis-equiv Ξ» where
F-is-precat-iso .is-iso.inv e β elem (e .Contra.Element.ob) (e .Contra.Element.section)
.is-iso.rinv e β refl
.is-iso.linv e β refl
.is-precat-iso.has-is-ff = is-isoβis-equiv Ξ» where
F-is-precat-iso .is-iso.inv h β elem-hom (h .Contra.Element-hom.hom) (h .Contra.Element-hom.commute)
.is-iso.rinv h β Contra.Element-hom-path _ _ refl
.is-iso.linv h β Element-hom-path refl