module Cat.Functor.Kan.Unique where

Uniqueness of Kan extensions🔗

Kan extensions (both left and right) are universal constructions, so they are unique when they exist. To get a theorem out of this intuition, we must be careful about how the structure and the properties are separated: Informally, we refer to the functor as “the Kan extension”, but in reality, the data associated with “the Kan extension of FF along pp” also includes the natural transformation. For accuracy, using the setup from the diagram below, we should say “(G,η)(G, \eta) is the Kan extension of FF along pp”.

To show uniqueness, suppose that (G1,η1)(G_1, \eta_1) and (G2,η2)(G_2, \eta_2) and both left extensions of FF along pp. Diagramming this with both natural transformations shown is a bit of a nightmare: the option which doesn’t result in awful crossed arrows is to duplicate the span CCD\mathcal{C}' \leftarrow \mathcal{C} \to \mathcal{D}. So, to be clear: The upper triangle and the lower triangle are the same.

Recall that (G1,η1)(G_1, \eta_1) being a left extension means we can (uniquely) factor natural transformations FMpF \to Mp through transformations G1MG_1 \to M. We want a map G1G2G_1 \to G_2, for which it will suffice to find a map FG2pF \to G_2p — but η2\eta_2 is right there! In the other direction, we can factor η1\eta_1 to get a map G2G1G_2 \to G_1. Since these factorisations are unique, we have a natural isomorphism.

  σ-inversesp
    :  {α : G₁ => G₂} {β : G₂ => G₁}
     (α ◂ p) ∘nt η₁ ≡ η₂
     (β ◂ p) ∘nt η₂ ≡ η₁
     Inversesⁿ α β
  σ-inversesp α-factor β-factor = C'D.make-inverses
    (l₂.σ-uniq₂ η₂
      (Nat-path λ j  sym (D.pullr (β-factor ηₚ j) ∙ α-factor ηₚ j))
      (Nat-path λ j  sym (D.idl _)))
    (l₁.σ-uniq₂ η₁
      (Nat-path λ j  sym (D.pullr (α-factor ηₚ j) ∙ β-factor ηₚ j))
      (Nat-path λ j  sym (D.idl _)))

It’s immediate from the construction that this isomorphism “sends η1\eta_1 to η2\eta_2”.

  unit : (l₁.σ η₂ ◂ p) ∘nt η₁ ≡ η₂
  unit = l₁.σ-comm

Another uniqueness-like result we can state for left extensions is the following: Given any functor G:CDG' : \mathcal{C}' \to \mathcal{D} and candidate “unit” transformation η:FGp\eta' : F \to G'p, if a left extension Lanp(F)\operatorname{Lan}_p(F) sends η\eta' to a natural isomorphism, then (G,η)(G', \eta') is also a left extension of FF along pp.

  is-invertible→is-lan
    :  {G' : Functor C' D} {eta' : F => G' F∘ p}
     is-invertibleⁿ (lan.σ eta')
     is-lan p F G' eta'
  is-invertible→is-lan {G' = G'} {eta'} invert = lan' where
    open is-lan
    open C'D.is-invertible invert

    lan' : is-lan p F G' eta'
    lan' .σ α = lan.σ α ∘nt inv
    lan' .σ-comm {M} {α} = Nat-path λ j 
      (lan.σ α .η _ D.∘ inv .η _) D.∘ eta' .η j                      ≡˘⟨ D.refl⟩∘⟨ (lan.σ-comm ηₚ _)
      (lan.σ α .η _ D.∘ inv .η _) D.(lan.σ eta' .η _ D.∘ eta .η j) ≡⟨ D.cancel-inner (invr ηₚ _)
      lan.σ α .η _ D.∘ eta .η j                                      ≡⟨ lan.σ-comm ηₚ _
      α .η j                                                         ∎
    lan' .σ-uniq {M} {α} {σ'} p = Nat-path λ j 
      lan.σ α .η j D.∘ inv .η j                  ≡⟨ (lan.σ-uniq {σ' = σ' ∘nt lan.σ eta'} (Nat-path λ j  p ηₚ j ∙ D.pushr (sym (lan.σ-comm ηₚ j))) ηₚ j) D.⟩∘⟨refl ⟩
      (σ' .η j D.∘ lan.σ eta' .η j) D.∘ inv .η _ ≡⟨ D.cancelr (invl ηₚ _)
      σ' .η j                                    ∎

Left Kan extensions are also invariant under arbitrary natural isomorphisms. To get better definitional control, we allow “adjusting” the resulting construction to talk about any natural transformation which is propositionally equal to the whiskering:

  natural-isos→is-lan
    : (p-iso : p ≅ⁿ p')
     (F-iso : F ≅ⁿ F')
     (G-iso : G ≅ⁿ G')
     ((Isoⁿ.to G-iso ◆ Isoⁿ.to p-iso) ∘nt eps ∘nt Isoⁿ.from F-iso) ≡ eps'
     is-lan p F G eps
     is-lan p' F' G' eps'

Into univalent categories🔗

As traditional with universal constructions, if F:CDF : \mathcal{C} \to \mathcal{D} takes values in a univalent category, we can sharpen our result: the type of left extensions of FF along pp is a proposition.

Lan-is-prop
  :  {p : Functor C C'} {F : Functor C D}  is-category D  is-prop (Lan p F)
Lan-is-prop {C = C} {C' = C'} {D = D} {p = p} {F = F} d-cat L₁ L₂ = path where

That’s because if D\mathcal{D} is univalent, then so is [C,D][\mathcal{C}', \mathcal{D}], so our natural isomorphism i:G1G2i : G_1 \cong G_2 is equivalent to an identification i:G1G2i' : G_1 \equiv G_2. Then, our tiny lemma stating that this isomorphism “sends η1\eta_1 to η2\eta_2” is precisely the data of a dependent identification η1η2\eta_1 \equiv \eta_2 over ii'.

  functor-path : L₁.Ext ≡ L₂.Ext
  functor-path = c'd-cat .to-path Lu.unique

  eta-path : PathP  i  F => functor-path i F∘ p) L₁.eta L₂.eta
  eta-path = Nat-pathp _ _ λ x 
    Univalent.Hom-pathp-reflr-iso d-cat (Lu.unit ηₚ _)

Since being a left extension is always a proposition when applied to (G,η)(G, \eta), even when the categories are not univalent, we can finish our proof.

  path : L₁ ≡ L₂
  path i .Ext = functor-path i
  path i .eta = eta-path i
  path i .has-lan =
    is-prop→pathp  i  is-lan-is-prop {p = p} {F} {functor-path i} {eta-path i})
      L₁.has-lan L₂.has-lan i