module Cat.Functor.Adjoint.Reflective where

Reflective subcategories🔗

Occasionally, full subcategory inclusions (hence fully faithful functors — like the inclusion of abelian groups into the category of all groups, or the inclusion PropsSets\mathbf{Props} \hookrightarrow \mathbf{Sets}) participate in an adjunction

When this is the case, we refer to the left adjoint functor LL as the reflector, and ι\iota exhibits C\mathcal{C} as a reflective subcategory of D\mathcal{D}. Reflective subcategory inclusions are of particular importance because they are monadic functors: They exhibit C\mathcal{C} as the category of algebras for an (idempotent) monad on D\mathcal{D}.

is-reflective : F ⊣ G  Type _
is-reflective {G = G} adj = is-fully-faithful G

The first thing we will prove is that the counit map ε:FGoo\varepsilon : FGo \to o of a reflexive subcategory inclusion is an isomorphism. Since GG is fully faithful, the unit map ηGo:GoGFGo\eta_{Go} : Go \to GFGo corresponds to a map oFGoo \to FGo, and this map can be seen to be a left- and right- inverse to ε\varepsilon applying the triangle identities.

module
  _ {C : Precategory o ℓ} {D : Precategory o' ℓ'} {F : Functor C D} {G : Functor D C}
    (adj : F ⊣ G) (g-ff : is-reflective adj)
  where
  private
    module DD = Cat.Reasoning Cat[ D , D ]
    module C = Cat.Reasoning C
    module D = Cat.Reasoning D
    module F = Func F
    module G = Func G
    module GF = Func (G F∘ F)
    module FG = Func (F F∘ G)
    module g-ff {x} {y} = Equiv (_ , g-ff {x} {y})
  open __ adj

  is-reflective→counit-is-iso :  {o}  FG.₀ o D.≅ o
  is-reflective→counit-is-iso {o} = morp where
    morp : F.(G.₀ o) D.≅ o
    morp = D.make-iso (counit.ε _) (g-ff.from (unit.η _)) invl invr
      where abstract
      invl : counit.ε o D.∘ g-ff.from (unit.η (G.₀ o)) ≡ D.id
      invl = fully-faithful→faithful {F = G} g-ff (
        G.(counit.ε o D._)                 ≡⟨ G.F-∘ _ _
        G.(counit.ε o) C.∘ G.(g-ff.from _) ≡⟨ C.refl⟩∘⟨  g-ff.ε _
        G.(counit.ε o) C.∘ unit.η (G.₀ o)    ≡⟨ zag ∙ sym G.F-id ⟩
        G.₁ D.id                               ∎)

      invr : g-ff.from (unit.η (G.₀ o)) D.∘ counit.ε o ≡ D.id
      invr = fully-faithful→faithful {F = G} g-ff (ap G.(
        g-ff.from _ D.∘ counit.ε _             ≡˘⟨ counit.is-natural _ _ _
        counit.ε _ D.∘ F.(G.(g-ff.from _)) ≡⟨ D.refl⟩∘⟨ F.⟨ g-ff.ε _ ⟩ ⟩
        counit.ε _ D.∘ F.(unit.η _)          ≡⟨ zig ⟩
        D.id                                   ∎))

  is-reflective→counit-iso : (F F∘ G) DD.≅ Id
  is-reflective→counit-iso = DD.invertible→iso counit invs where
    invs = invertible→invertibleⁿ counit λ x 
      D.iso→invertible (is-reflective→counit-is-iso {o = x})

We can now prove that the adjunction LιL \dashv \iota is monadic.

is-reflective→is-monadic
  :  {F : Functor C D} {G : Functor D C}
   (adj : F ⊣ G)  is-reflective adj  is-monadic adj
is-reflective→is-monadic {C = C} {D = D} {F = F} {G} adj g-ff = eqv where

It suffices to show that the comparison functor DCGFD \to C^GF is fully faithful and split essentially surjective. For full faithfulness, observe that it’s always faithful; The fullness comes from the assumption that GG is ff.

  comp-ff : is-fully-faithful Comp
  comp-ff {x} {y} = is-iso→is-equiv isom where
    open is-iso
    isom : is-iso _
    isom .inv alg = equiv→inverse g-ff (alg .morphism)
    isom .rinv x = Algebra-hom-path _ (equiv→counit g-ff _)
    isom .linv x = equiv→unit g-ff _

To show that the comparison functor is split essentially surjective, suppose we have an object oo admitting the structure of an GFGF-algebra; We will show that oGFoo \cong GFo as GFGF-algebras — note that GF(o)GF(o) admits a canonical (free) algebra structure. The algebra map ν:GF(o)o\nu : GF(o) \to o provides an algebra morphism from GF(o)oGF(o) \to o, and the morphism oGF(o)o \to GF(o) is can be taken to be adjunction unit η\eta.

The crucial lemma in establishing that these are inverses is that ηGFx=GF(ηx)\eta_{GFx} = GF(\eta_x), which follows because both of those morphisms are right inverses to GεxG\varepsilon_x, which is an isomorphism because ε\varepsilon is.

  comp-seso : is-split-eso Comp
  comp-seso (ob , alg) = F.₀ ob , isom where
    Fo→o : Algebra-hom _ (L∘R adj) (Comp.(F.₀ ob)) (ob , alg)
    Fo→o .morphism = alg .ν
    Fo→o .commutes = sym (alg .ν-mult)

    o→Fo : Algebra-hom _ (L∘R adj) (ob , alg) (Comp.(F.₀ ob))
    o→Fo .morphism = unit.η _
    o→Fo .commutes =
        unit.is-natural _ _ _
      ∙ ap₂ C.__ refl (η-comonad-commute adj g-ff)
      ∙ sym (G.F-∘ _ _)
      ∙ ap G.(sym (F.F-∘ _ _) ·· ap F.(alg .ν-unit) ·· F.F-id)
      ∙ sym (ap₂ C.__ refl (sym (η-comonad-commute adj g-ff)) ∙ zag ∙ sym G.F-id)

    isom : Comp.(F.₀ ob) EM.(ob , alg)
    isom = EM.make-iso Fo→o o→Fo
      (Algebra-hom-path _ (alg .ν-unit))
      (Algebra-hom-path _ (
          unit.is-natural _ _ _
        ·· ap₂ C.__ refl (η-comonad-commute adj g-ff)
        ·· sym (G.F-∘ _ _)
        ·· ap G.(sym (F.F-∘ _ _) ·· ap F.(alg .ν-unit) ·· F.F-id)
        ·· G.F-id))

  eqv : is-equivalence Comp
  eqv = ff+split-eso→is-equivalence comp-ff comp-seso