module Cat.Diagram.Pullback.Properties {o ℓ} {C : Precategory o ℓ} where

Properties of pullbacks🔗

This module chronicles some general properties of pullbacks.

Pasting law🔗

The pasting law for pullbacks says that, if in the commutative diagram below the the right square is a pullback, then the left square is universal if, and only if, the outer rectangle is, too. Note the emphasis on the word commutative: if we don’t know that both squares (and the outer rectangle) all commute, the pasting law does not go through.

module _ {a b c d e f : Ob}
         {a→d : Hom a d} {a→b : Hom a b} {b→c : Hom b c}
         {d→e : Hom d e} {b→e : Hom b e} {e→f : Hom e f}
         {c→f : Hom c f}
         (right-pullback : is-pullback b→c c→f b→e e→f)
  where

  private module right = is-pullback right-pullback

Let’s start with proving that, if the outer rectangle is a pullback, then so is the left square. Assume, then, that we have some other object xx, which fits into a cone, like in the diagram below. I’ve coloured the two arrows we assume commutative.

  pasting-outer→left-is-pullback
    : is-pullback (b→c ∘ a→b) c→f a→d (e→f ∘ d→e)
     (square : b→e ∘ a→b ≡ d→e ∘ a→d)
     is-pullback a→b b→e a→d d→e
  pasting-outer→left-is-pullback outer square = pb where
    module outer = is-pullback outer

To appeal to the universal property of the outer pullback, we must somehow extend our red cone over bedb \to e \leftarrow d to one over cfec \to f \leftarrow e. Can we do this? Yes! By assumption, the square on the right commutes, which lets us apply commutativity of the red diagram (the assumption pp in the code). Check out the calculation below:

    abstract
      path :  {P} {P→b : Hom P b} {P→d : Hom P d} (p : b→e ∘ P→b ≡ d→e ∘ P→d)
            c→f ∘ b→c ∘ P→b ≡ (e→f ∘ d→e) ∘ P→d
      path {_} {P→b} {P→d} p =
        c→f ∘ b→c ∘ P→b   ≡⟨ extendl right.square ⟩
        e→f ∘ b→e ∘ P→b   ≡⟨ ap (e→f ∘_) p ⟩
        e→f ∘ d→e ∘ P→d   ≡⟨ cat! C ⟩
        (e→f ∘ d→e) ∘ P→d ∎

    pb : is-pullback _ _ _ _
    pb .is-pullback.square =
      b→e ∘ a→b ≡⟨ square ⟩
      d→e ∘ a→d ∎

We thus have an induced map xax \to a, which, since aa is a pullback, makes everything in sight commute, and does so uniquely.

    pb .universal {p₁' = P→b} {p₂' = P→d} p =
      outer.universal {p₁' = b→c ∘ P→b} {p₂' = P→d} (path p)

    pb .p₁∘universal {p₁' = P→b} {p₂' = P→d} {p = p} =
      right.unique₂ {p = pulll right.square ∙ pullr p}
        (assoc _ _ _ ∙ outer.p₁∘universal)
        (pulll square ∙ pullr outer.p₂∘universal)
        refl p

    pb .p₂∘universal {p₁' = P→b} {p₂' = P→d} {p = p} = outer.p₂∘universal

    pb .unique {p = p} q r =
      outer.unique (sym (ap (__) (sym q) ∙ assoc _ _ _)) r

For the converse, suppose that both small squares are a pullback, and we have a cone over cfdc \to f \leftarrow d. By the universal property of the right pullback, we can find a map xbx \to b forming the left leg of a cone over bedb \to e \leftarrow d; By the universal property of the left square, we then have a map xax \to a, as we wanted.

  pasting-left→outer-is-pullback
    : is-pullback a→b b→e a→d d→e
     (square : c→f ∘ b→c ∘ a→b ≡ (e→f ∘ d→e) ∘ a→d)
     is-pullback (b→c ∘ a→b) c→f a→d (e→f ∘ d→e)
  pasting-left→outer-is-pullback left square = pb where
    module left = is-pullback left

    pb : is-pullback (b→c ∘ a→b) c→f a→d (e→f ∘ d→e)
    pb .is-pullback.square =
      c→f ∘ b→c ∘ a→b   ≡⟨ square ⟩
      (e→f ∘ d→e) ∘ a→d ∎
    pb .universal {p₁' = P→c} {p₂' = P→d} x =
      left.universal {p₁' = right.universal (x ∙ sym (assoc _ _ _))} {p₂' = P→d}
        right.p₂∘universal
    pb .p₁∘universal = pullr left.p₁∘universal ∙ right.p₁∘universal
    pb .p₂∘universal = left.p₂∘universal
    pb .unique {p₁' = P→c} {P→d} {p = p} {lim'} q r =
      left.unique (right.unique (assoc _ _ _ ∙ q) s) r
      where
        s : b→e ∘ a→b ∘ lim' ≡ d→e ∘ P→d
        s =
          b→e ∘ a→b ∘ lim'   ≡⟨ pulll left.square ⟩
          (d→e ∘ a→d) ∘ lim' ≡⟨ pullr r ⟩
          d→e ∘ P→d          ∎

Monomorphisms🔗

Being a monomorphism is a “limit property”. Specifically, f:ABf : A \to B is a monomorphism iff. the square below is a pullback.

module _ {a b} {f : Hom a b} where
  is-monic→is-pullback : is-monic f  is-pullback id f id f
  is-monic→is-pullback mono .square = refl
  is-monic→is-pullback mono .universal {p₁' = p₁'} p = p₁'
  is-monic→is-pullback mono .p₁∘universal = idl _
  is-monic→is-pullback mono .p₂∘universal {p = p} = idl _ ∙ mono _ _ p
  is-monic→is-pullback mono .unique p q = introl refl ∙ p

  is-pullback→is-monic : is-pullback id f id f  is-monic f
  is-pullback→is-monic pb f g p = sym (pb .p₁∘universal {p = p}) ∙ pb .p₂∘universal

Pullbacks additionally preserve monomorphisms, as shown below:

is-monic→pullback-is-monic
  :  {x y z} {f : Hom x z} {g : Hom y z} {p} {p1 : Hom p x} {p2 : Hom p y}
   is-monic f
   is-pullback p1 f p2 g
   is-monic p2
is-monic→pullback-is-monic {f = f} {g} {p1 = p1} {p2} mono pb h j p = eq
  where
    module pb = is-pullback pb
    q : f ∘ p1 ∘ h ≡ f ∘ p1 ∘ j
    q =
      f ∘ p1 ∘ h ≡⟨ extendl pb.square ⟩
      g ∘ p2 ∘ h ≡⟨ ap (g ∘_) p ⟩
      g ∘ p2 ∘ j ≡˘⟨ extendl pb.square ⟩
      f ∘ p1 ∘ j ∎

    r : p1 ∘ h ≡ p1 ∘ j
    r = mono _ _ q

    eq : h ≡ j
    eq = pb.unique₂ {p = extendl pb.square} r p refl refl