module Cat.Diagram.Colimit.Representable where
Representability of colimits🔗
Since colimits are defined by universal property, we can also phrase the definition in terms of an equivalence between -functors.
Let be some diagram in . If has a colimit , then that means that maps out of are in bijection with a product of maps , subject to some conditions.
: Functor C (Sets ℓ)
Lim[C[F-,=]] .F₀ c = el (Dia => Const c) Nat-is-set
Lim[C[F-,=]] .F₁ f α = const-nt f ∘nt α
Lim[C[F-,=]] .F-id = funext λ _ → Nat-path λ _ → C.idl _
Lim[C[F-,=]] .F-∘ _ _ = funext λ _ → Nat-path λ _ → sym $ C.assoc _ _ _
Lim[C[F-,=]]
Hom-into-inj: ∀ {c : C.Ob} (eta : Dia => Const c)
→ Hom-from C c => Lim[C[F-,=]]
.η x f = const-nt f ∘nt eta
Hom-into-inj eta .is-natural x y f = funext λ g → Nat-path λ _ →
Hom-into-inj eta .assoc _ _ _
sym $ C
represents→is-colimit: ∀ {c : C.Ob} {eta : Dia => Const c}
→ is-invertibleⁿ (Hom-into-inj eta)
→ is-colimit Dia c eta
{c} {eta} nat-inv = colim where
represents→is-colimit module nat-inv = is-invertibleⁿ nat-inv
: is-colimit Dia c eta
colim .σ {M} α =
colim .inv .η _ (idnat-constr ∘nt α)
hom→⊤-natural-trans $ nat-inv.σ-comm {M} {α} = Nat-path λ j →
colim .invl ηₚ _ $ₚ _ ηₚ j ∙ C.idl _
nat-inv.σ-uniq {M} {α} {σ'} q = Nat-path λ j →
colim .inv .η _ (idnat-constr ∘nt ⌜ α ⌝) ≡⟨ ap! q ⟩
nat-inv.inv .η _ ⌜ idnat-constr ∘nt (σ' ◂ !F) ∘nt cocone→unit Dia eta ⌝ ≡⟨ ap! (Nat-path λ _ → C.idl _) ⟩
nat-inv.inv .η (M .F₀ tt) (const-nt (σ' .η j) ∘nt eta) ≡⟨ nat-inv.invr ηₚ _ $ₚ _ ⟩
nat-inv.η tt ∎ σ'