module Order.Frame whereFramesπ
record is-frame {o β} (P : Poset o β) : Type (lsuc o β β) where
no-eta-equality
open Poset P
field
_β©_ : Ob β Ob β Ob
β©-meets : β x y β is-meet P x y (x β© y)
has-top : Top P
β : β {I : Type o} (k : I β Ob) β Ob
β-lubs : β {I : Type o} (k : I β Ob) β is-lub P k (β k)
infixr 25 _β©_
module is-lubs {I} {k : I β Ob} = is-lub (β-lubs k)
open Meets β©-meets public
open Top has-top using (top; !) public
open Lubs P β-lubs public
field
β-distribl : β {I} x (f : I β Ob) β x β© β f β‘ β Ξ» i β x β© f i
has-meet-slat : is-meet-semilattice P
has-meet-slat .is-meet-semilattice._β©_ = _β©_
has-meet-slat .is-meet-semilattice.β©-meets = β©-meets
has-meet-slat .is-meet-semilattice.has-top = has-top
has-join-slat : is-join-semilattice P
has-join-slat .is-join-semilattice._βͺ_ = _βͺ_
has-join-slat .is-join-semilattice.βͺ-joins = βͺ-joins
has-join-slat .is-join-semilattice.has-bottom = has-bottomrecord
is-frame-hom
{P : Poset o β} {Q : Poset o β'}
(f : Monotone P Q)
(P-frame : is-frame P)
(Q-frame : is-frame Q)
: Type (lsuc o β β') where
private
module P = Poset P
module PαΆ = is-frame P-frame
module Q = Order.Reasoning Q
module QαΆ = is-frame Q-frame
open is-lub
field
β©-β€ : β x y β (f # x) QαΆ .β© (f # y) Q.β€ f # (x PαΆ .β© y)
top-β€ : QαΆ .top Q.β€ f # PαΆ .top
β-β€ : β {I : Type o} (k : I β β P β) β (f # PαΆ .β k) Q.β€ QαΆ .β (apply f β k)
has-meet-slat-hom : is-meet-slat-hom f PαΆ .has-meet-slat QαΆ .has-meet-slat
has-meet-slat-hom .is-meet-slat-hom.β©-β€ = β©-β€
has-meet-slat-hom .is-meet-slat-hom.top-β€ = top-β€
open is-meet-slat-hom has-meet-slat-hom hiding (β©-β€; top-β€) public
pres-β : β {I : Type o} (k : I β β P β) β (f # PαΆ .β k) β‘ QαΆ .β (apply f β k)
pres-β k =
Q.β€-antisym
(β-β€ k)
(QαΆ .β-universal _ (Ξ» i β f .pres-β€ (PαΆ .β-inj i)))
pres-lubs
: β {I : Type o} {k : I β β P β} {l}
β is-lub P k l
β is-lub Q (apply f β k) (f # l)
pres-lubs {k = k} {l = l} l-lub .famβ€lub i = f .pres-β€ (l-lub .famβ€lub i)
pres-lubs {k = k} {l = l} l-lub .least ub p =
f # l Q.β€β¨ f .pres-β€ (l-lub .least _ PαΆ .β-inj) β©
f # PαΆ .β k Q.β€β¨ β-β€ k β©
QαΆ .β (apply f β k) Q.β€β¨ QαΆ .β-universal ub p β©
ub Q.β€β
opaque
unfolding Lubs.βͺ-joins Lubs.has-bottom
has-join-slat-hom : is-join-slat-hom f PαΆ .has-join-slat QαΆ .has-join-slat
has-join-slat-hom .is-join-slat-hom.βͺ-β€ x y =
Q.β€-trans (β-β€ _) $ QαΆ .β-universal _ Ξ» where
(lift true) β QαΆ .β-inj (lift true)
(lift false) β QαΆ .β-inj (lift false)
has-join-slat-hom .is-join-slat-hom.bot-β€ =
Q.β€-trans (β-β€ _) (QαΆ .β-universal _ (Ξ» ()))
open is-join-slat-hom has-join-slat-hom public
open is-frame-homid-frame-hom
: β (PαΆ : is-frame P)
β is-frame-hom idβ PαΆ PαΆ
id-frame-hom {P = P} PαΆ .β©-β€ x y =
Poset.β€-refl P
id-frame-hom {P = P} PαΆ .top-β€ =
Poset.β€-refl P
id-frame-hom {P = P} PαΆ .β-β€ k =
Poset.β€-refl P
β-frame-hom
: β {Pβ Qβ Rβ} {f : Monotone Q R} {g : Monotone P Q}
β is-frame-hom f Qβ Rβ
β is-frame-hom g Pβ Qβ
β is-frame-hom (f ββ g) Pβ Rβ
β-frame-hom {R = R} {f = f} {g = g} f-pres g-pres .β©-β€ x y =
R .Poset.β€-trans (f-pres .β©-β€ (g # x) (g # y)) (f .pres-β€ (g-pres .β©-β€ x y))
β-frame-hom {R = R} {f = f} {g = g} f-pres g-pres .top-β€ =
R .Poset.β€-trans (f-pres .top-β€) (f .pres-β€ (g-pres .top-β€))
β-frame-hom {R = R} {f = f} {g = g} f-pres g-pres .β-β€ k =
R .Poset.β€-trans (f .pres-β€ (g-pres .β-β€ k)) (f-pres .β-β€ (Ξ» i β g # k i))
Frame-subcat : β o β β Subcat (Posets o β) _ _
Frame-subcat o β .Subcat.is-ob = is-frame
Frame-subcat o β .Subcat.is-hom = is-frame-hom
Frame-subcat o β .Subcat.is-hom-prop = hlevel!
Frame-subcat o β .Subcat.is-hom-id = id-frame-hom
Frame-subcat o β .Subcat.is-hom-β = β-frame-hom
Frames : β o β β Precategory _ _
Frames o β = Subcategory (Frame-subcat o β)
module Frames {o} {β} = Cat.Reasoning (Frames o β)
Frame : β o β β Type _
Frame o β = Frames.Ob {o} {β}Power framesπ
A canonical source of frames are power sets: The power set of any type is a frame, because it is a complete lattice satisfying the infinite distributive law; This can be seen by some computation, as is done below.
open is-frame
open is-meet-semilattice
Power-frame : β {β} (A : Type β) β Frame β β
Power-frame {β = β} A .fst = Subsets A
Power-frame A .snd ._β©_ P Q i = P i β§Ξ© Q i
Power-frame A .snd .β©-meets P Q =
is-meet-pointwise Ξ» _ β Props-has-meets (P _) (Q _)
Power-frame A .snd .has-top =
has-top-pointwise Ξ» _ β Props-has-top
Power-frame A .snd .β k i = βΞ© _ (Ξ» j β k j i)
Power-frame A .snd .β-lubs k = is-lub-pointwise _ _ Ξ» _ β
Props-has-lubs Ξ» i β k i _
Power-frame A .snd .β-distribl x f = funext Ξ» i β Ξ©-ua
(Ξ» (x , i) β β‘-map (Ξ» (y , z) β _ , x , z) i)
(Ξ» r β β‘-rec! (Ξ» { (x , y , z) β y , inc (_ , z) }) r)