module Cat.Diagram.Pushout {o ℓ} (C : Precategory o ℓ) where
Pushouts🔗
A pushout of and is the dual construction to the pullback. Much like the pullback is a subobject of the product, the pushout is a quotient object of the coproduct. The maps and tell us which parts of the coproduct to identify.
record is-pushout {P} (f : Hom X Y) (i₁ : Hom Y P) (g : Hom X Z) (i₂ : Hom Z P)
: Type (o ⊔ ℓ) where
field
: i₁ ∘ f ≡ i₂ ∘ g square
The most important part of the pushout is a commutative square of the following shape:
This can be thought of as providing “gluing instructions”. The injection maps and embed and into , and the maps and determine what parts of and we ought to identify in .
The universal property ensures that we only perform the minimal number of identifications required to make the aforementioned square commute.
: ∀ {Q} {i₁' : Hom Y Q} {i₂' : Hom Z Q}
universal → i₁' ∘ f ≡ i₂' ∘ g → Hom P Q
: {p : i₁' ∘ f ≡ i₂' ∘ g} → universal p ∘ i₁ ≡ i₁'
i₁∘universal : {p : i₁' ∘ f ≡ i₂' ∘ g} → universal p ∘ i₂ ≡ i₂'
i₂∘universal
: {p : i₁' ∘ f ≡ i₂' ∘ g} {colim' : Hom P Q}
unique → colim' ∘ i₁ ≡ i₁'
→ colim' ∘ i₂ ≡ i₂'
→ colim' ≡ universal p
unique₂: {p : i₁' ∘ f ≡ i₂' ∘ g} {colim' colim'' : Hom P Q}
→ colim' ∘ i₁ ≡ i₁' → colim' ∘ i₂ ≡ i₂'
→ colim'' ∘ i₁ ≡ i₁' → colim'' ∘ i₂ ≡ i₂'
→ colim' ≡ colim''
{p = o} p q r s = unique {p = o} p q ∙ sym (unique r s) unique₂
We provide a convenient packaging of the pushout and the injection maps:
record Pushout (f : Hom X Y) (g : Hom X Z) : Type (o ⊔ ℓ) where
field
{coapex} : Ob
: Hom Y coapex
i₁ : Hom Z coapex
i₂ : is-pushout f i₁ g i₂
has-is-po
open is-pushout has-is-po public