module 1Lab.Path.IdentitySystem where
Identity systemsπ
An identity system is a way of characterising the path spaces of a particular type, without necessarily having to construct a full encode-decode equivalence. Essentially, the data of an identity system is precisely the data required to implement path induction, a.k.a. the J eliminator. Any type with the data of an identity system satisfies its own J, and conversely, if the type satisfies J, it is an identity system.
We unravel the definition of being an identity system into the following data, using a translation that takes advantage of cubical type theoryβs native support for paths-over-paths:
record
{β β'} {A : Type β}
is-identity-system (R : A β A β Type β')
(refl : β a β R a a)
: Type (β β β')
where
no-eta-equality
field
: β {a b} β R a b β a β‘ b
to-path
to-path-over: β {a b} (p : R a b)
β PathP (Ξ» i β R a (to-path p i)) (refl a) p
: β {a} β is-contr (Ξ£ A (R a))
is-contr-Ξ£R .centre = _ , refl _
is-contr-Ξ£R .paths x i = to-path (x .snd) i , to-path-over (x .snd) i
is-contr-Ξ£R
open is-identity-system public
As mentioned before, the data of an identity system gives us exactly what is required to prove J for the relation . This is essentially the decomposition of J into contractibility of singletons, but with singletons replaced by -singletons.
IdsJ: β {β β' β''} {A : Type β} {R : A β A β Type β'} {r : β a β R a a} {a : A}
β is-identity-system R r
β (P : β b β R a b β Type β'')
β P a (r a)
β β {b} s β P b s
=
IdsJ ids P pr s (Ξ» i β P (ids .to-path s i) (ids .to-path-over s i)) pr transport
If we have a relation together with reflexivity witness , then any equivalence which maps equips with the structure of an identity system. Of course if we do not particularly care about the specific reflexivity witness, we can simply define as .
equiv-pathβidentity-system: β {β β'} {A : Type β} {R : A β A β Type β'} {r : β a β R a a}
β (eqv : β {a b} β R a b β (a β‘ b))
β (β a β Equiv.from eqv refl β‘ r a)
β is-identity-system R r
{R = R} {r = r} eqv pres' = ids where
equiv-pathβidentity-system : β {a} β is-contr (Ξ£ _ (R a))
contract = is-hlevelβ 0 ((total (Ξ» _ β eqv .fst) , equivβtotal (eqv .snd)))
contract (contr _ Singleton-is-contr)
: β {a} β eqv .fst (r a) β‘ refl
pres {a = a} = Equiv.injectiveβ (eqv eβ»ΒΉ) (Equiv.Ξ· eqv _) (pres' _)
pres
: is-identity-system R r
ids .to-path = eqv .fst
ids .to-path-over {a = a} {b = b} p i =
ids
is-propβpathp(Ξ» i β is-contrβis-prop (eqv .snd .is-eqv Ξ» j β eqv .fst p (i β§ j)))
(r a , pres)
(p , refl)
.fst i
Note that for any , the type of identity system data on is a proposition. This is because it is exactly equivalent to the type being contractible for every , which is a proposition by standard results.
identity-system-gives-path: β {β β'} {A : Type β} {R : A β A β Type β'} {r : β a β R a a}
β is-identity-system R r
β β {a b} β R a b β (a β‘ b)
{R = R} {r = r} ids =
identity-system-gives-path (ids .to-path , iso from ri li) where
IsoβEquiv : β {a b} β a β‘ b β R a b
from {a = a} p = transport (Ξ» i β R a (p i)) (r a)
from
: β {a b} β is-right-inverse (from {a} {b}) (ids .to-path)
ri = J (Ξ» y p β ids .to-path (from p) β‘ p)
ri ( ap (ids .to-path) (transport-refl _)
)
β to-path-refl ids
: β {a b} β is-left-inverse (from {a} {b}) (ids .to-path)
li = IdsJ ids (Ξ» y p β from (ids .to-path p) β‘ p)
li ( ap from (to-path-refl ids)
_ ) β transport-refl
In subtypesπ
Let be an embedding. If is an identity system on , then it can be pulled back along to an identity system on .
module
_ {β β' β''} {A : Type β} {B : Type β'}
{R : B β B β Type β''} {r : β b β R b b}
(ids : is-identity-system R r)
(f : A βͺ B)
where
pullback-identity-system: is-identity-system (Ξ» x y β R (f .fst x) (f .fst y)) (Ξ» _ β r _)
.to-path {a} {b} x = ap fst $
pullback-identity-system .snd (f .fst b) (a , ids .to-path x) (b , refl)
f .to-path-over {a} {b} p i =
pullback-identity-system
comp(Ξ» j β R (f .fst a) (f .snd (f .fst b) (a , ids .to-path p) (b , refl) i .snd (~ j)))
(β i) Ξ» where
(k = i0) β ids .to-path-over p (~ k)
k (i = i0) β ids .to-path-over p (~ k β¨ i)
k (i = i1) β p k
This is actually part of an equivalence: if the equality identity system on (thus any identity system) can be pulled back along , then is an embedding.
identity-systemβembedding: β {β β'} {A : Type β} {B : Type β'}
β (f : A β B)
β is-identity-system (Ξ» x y β f x β‘ f y) (Ξ» _ β refl)
β is-embedding f
= cancellableβembedding
identity-systemβembedding f ids (identity-system-gives-path ids)
Univalenceπ
Note that univalence is precisely the statement that equivalences are an identity system on the universe:
univalence-identity-system: β {β} β is-identity-system {A = Type β} _β_ Ξ» _ β id , id-equiv
.to-path = ua
univalence-identity-system .to-path-over p =
univalence-identity-system (Ξ» _ β is-equiv-is-prop) $ funextP $ Ξ» a β pathβua-pathp p refl Ξ£-prop-pathp
Sets and Hedbergβs theoremπ
We now apply the general theory of identity systems to something a lot more mundane: recognising sets. An immediate consequence of having an identity system on a type is that, if is pointwise an -type, then is an -type. Now, if is a reflexive family of propositions, then all we need for to be an identity system is that , by the previous observation, this implies is a set.
set-identity-system: β {β β'} {A : Type β} {R : A β A β Type β'} {r : β x β R x x}
β (β x y β is-prop (R x y))
β (β {x y} β R x y β x β‘ y)
β is-identity-system R r
.to-path = rpath
set-identity-system rprop rpath .to-path-over p =
set-identity-system rprop rpath (Ξ» i β rprop _ _) _ p is-propβpathp
If is a type with ¬¬-stable equality, then by the theorem above, the pointwise double negation of its identity types is an identity system: and so, if a type has decidable (thus ¬¬-stable) equality, it is a set.
¬¬-stable-identity-system: β {β} {A : Type β}
β (β {x y} β Β¬ Β¬ Path A x y β x β‘ y)
β is-identity-system (Ξ» x y β Β¬ Β¬ Path A x y) Ξ» a k β k refl
= set-identity-system Ξ» x y f g β
¬¬-stable-identity-system Ξ» h β absurd (g h)
funext
: β {β} {A : Type β} β Discrete A β is-set A
Discreteβis-set {A = A} dec =
Discreteβis-set 1 (¬¬-stable-identity-system stable) Ξ» x y f g β
identity-systemβhlevel Ξ» h β absurd (g h)
funext where
: {x y : A} β Β¬ Β¬ x β‘ y β x β‘ y
stable {x = x} {y = y} ¬¬p with dec {x} {y}
stable ... | yes p = p
... | no ¬p = absurd (¬¬p ¬p)