module Cat.Instances.Shape.Cospan where
The “cospan” category🔗
A cospan in a category is a pair of morphisms with a common codomain. A limit over a diagram with cospan shape is called a pullback. Correspondingly, to encode such diagrams, we have a “cospan category” . The dual of this category, which looks like , is the “span” category. Colimits over a span are called pushouts.
data Cospan-ob ℓ : Type ℓ where
: Cospan-ob ℓ
cs-a cs-b cs-c
: ∀ {ℓ ℓ'} → Cospan-ob ℓ → Cospan-ob ℓ → Type ℓ'
Cospan-hom = Lift _ ⊤ -- identity on a
Cospan-hom cs-a cs-a = Lift _ ⊥ -- no maps a → b
Cospan-hom cs-a cs-b = Lift _ ⊤ -- one map a → c
Cospan-hom cs-a cs-c = Lift _ ⊥ -- no maps b → a
Cospan-hom cs-b cs-a = Lift _ ⊤ -- identity on b
Cospan-hom cs-b cs-b = Lift _ ⊤ -- one map b → c
Cospan-hom cs-b cs-c = Lift _ ⊥ -- no maps c → a
Cospan-hom cs-c cs-a = Lift _ ⊥ -- no maps c → b
Cospan-hom cs-c cs-b = Lift _ ⊤ -- identity on c
Cospan-hom cs-c cs-c
: ∀ {a b} → Precategory a b ·→·←· ·←·→·
Converting a pair of morphisms with common codomain to a cospan-shaped diagram is straightforward:
module _ x y {o ℓ} {C : Precategory o ℓ} where
open Precategory C
open Functor
: ∀ {a b c} → Hom a c → Hom b c → Functor (·→·←· {x} {y}) C
cospan→cospan-diagram = funct where
cospan→cospan-diagram f g : Functor _ _
funct .F₀ cs-a = _
funct .F₀ cs-b = _
funct .F₀ cs-c = _
funct .F₁ {cs-a} {cs-c} _ = f
funct .F₁ {cs-b} {cs-c} _ = g funct