module Cat.Diagram.Coproduct.Copower where

Copowers🔗

Let C\mathcal{C} be a category admitting κ\kappa-small indexed coproducts, for example a κ\kappa-cocomplete category. In the same way that (in ordinary arithmetic) the iterated product of a bunch of copies of the same factor

a×a××an \underbrace{a \times a \times \dots \times a}_{n}

is called a “power”, we refer to the coproduct XA\coprod_{X} A of many copies of an object XX indexed by a κ\kappa-small set XX as the copower of AA by XX, and alternatively denote it XAX \otimes A. If C\mathcal{C} does indeed admit coproducts indexed by any κ\kappa-small set, then the copowering construction extends to a functor Setsκ×CC\mathbf{Sets}_\kappa \times \mathcal{C} \to \mathcal{C}.

The notion of copowering gives us slick terminology for a category which admits all κ\kappa-small coproducts, but not necessarily all κ\kappa-small colimits: Such a category is precisely one copowered over Setsκ\mathbf{Sets}_\kappa.

  __ : Set Ob  Ob
  X ⊗ A = coprods X  _  A) .ΣF

Copowers satisfy a universal property: XAX \otimes A is a representing object for the functor that takes an object BB to the XXth power of the set of morphisms from AA to BB; in other words, we have a natural isomorphism HomC(XA,)HomSets(X,HomC(A,))\mathbf{Hom}_\mathcal{C}(X \otimes A, -) \cong \mathbf{Hom}_{\mathbf{Sets}}(X, \mathbf{Hom}_\mathcal{C}(A, -)).

  copower-hom-iso
    :  {X A}
     Hom-from C (X ⊗ A) ≅ⁿ Hom-from (Sets ℓ) X F∘ Hom-from C A
  copower-hom-iso {X} {A} = iso→isoⁿ
     _  equiv→iso (hom-iso (coprods X  _  A))))
     _  ext λ _ _  assoc _ _ _)

The action of the copowering functor is given by simultaneously changing the indexing along a function of sets f:XYf : X \to Y and changing the underlying object by a morphism g:ABg : A \to B. This is functorial by the uniqueness properties of colimiting maps.

  Copowering : Functor (Sets ℓ ×ᶜ C) C
  Copowering .F₀ (X , A) = X ⊗ A
  Copowering .F₁ {X , A} {Y , B} (idx , obj) =
    coprods X  _  A) .match λ i  coprods Y  _  B) .ι (idx i) ∘ obj
  Copowering .F-id {X , A} = sym $
    coprods X  _  A) .unique _ λ i  sym id-comm
  Copowering .F-∘ {X , A} f g = sym $
    coprods X  _  A) .unique _ λ i 
      pullr (coprods _ _ .commute) ∙ extendl (coprods _ _ .commute)

cocomplete→copowering
  :  {o ℓ} {C : Precategory o ℓ}
   is-cocomplete ℓ ℓ C  Functor (Sets ℓ ×ᶜ C) C
cocomplete→copowering colim = Copowers.Copowering λ S F 
  Colimit→IC _ (is-hlevel-suc 2 (S .is-tr)) F (colim _)