module Cat.Instances.Discrete whereprivate variable
β β' : Level
X : Type β
C : Precategory β β'
open Precategory
open Functor
open _=>_Discrete categoriesπ
Given a groupoid we can build the category with space of objects and a single morphism whenever
Disc : (A : Type β) β is-groupoid A β Precategory β β
Disc A A-grpd .Ob = A
Disc A A-grpd .Hom = _β‘_
Disc A A-grpd .Hom-set = A-grpd
Disc A A-grpd .id = refl
Disc A A-grpd ._β_ p q = q β p
Disc A A-grpd .idr _ = β-idl _
Disc A A-grpd .idl _ = β-idr _
Disc A A-grpd .assoc _ _ _ = sym (β-assoc _ _ _)
Disc' : Set β β Precategory β β
Disc' A = Disc β£ A β£ h where abstract
h : is-groupoid β£ A β£
h = is-hlevel-suc 2 (A .is-tr)Clearly this is a univalent groupoid:
Disc-is-category : β {A : Type β} {A-grpd} β is-category (Disc A A-grpd)
Disc-is-category .to-path is = is .to
Disc-is-category .to-path-over is = β
-pathp _ _ _ Ξ» i j β is .to (i β§ j)
Disc-is-groupoid : β {A : Type β} {A-grpd} β is-pregroupoid (Disc A A-grpd)
Disc-is-groupoid p = make-invertible _ (sym p) (β-invl p) (β-invr p)We can lift any function between the underlying types to a functor between discrete categories. This is because every function automatically respects equality in a functorial way.
lift-disc
: β {A : Set β} {B : Set β'}
β (β£ A β£ β β£ B β£)
β Functor (Disc' A) (Disc' B)
lift-disc f .Fβ = f
lift-disc f .Fβ = ap f
lift-disc f .F-id = refl
lift-disc f .F-β p q = ap-β f q pCodisc' : β {β'} β Type β β Precategory β β'
Codisc' x .Ob = x
Codisc' x .Hom _ _ = Lift _ β€
Codisc' x .Hom-set _ _ = is-propβis-set (Ξ» _ _ i β lift tt)
Codisc' x .id = lift tt
Codisc' x ._β_ _ _ = lift tt
Codisc' x .idr _ = refl
Codisc' x .idl _ = refl
Codisc' x .assoc _ _ _ = reflDiagrams in Disc(X)π
If
is a discrete type, then it is in particular in
Set, and we
can make diagrams of shape
in some category
using the decidable equality on
We note that the decidable equality is redundant information:
The construction Disc' above
extends into a left adjoint to the Ob functor.
Disc-diagram
: β {X : Set β} β¦ _ : Discrete β£ X β£ β¦
β (β£ X β£ β Ob C)
β Functor (Disc' X) C
Disc-diagram {C = C} {X = X} β¦ d β¦ f = F where
module C = Precategory C
P : β£ X β£ β β£ X β£ β Type _
P x y = C.Hom (f x) (f y)
go : β {x y : β£ X β£} β x β‘ y β Dec (x β‘α΅’ y) β P x y
go {x} {.x} p (yes reflα΅’) = C.id
go {x} {y} p (no Β¬p) = absurd (Β¬p (Idβpath.from p))The object part of the functor is the provided and the decidable equality is used to prove that respects equality. This is why itβs redundant: automatically respects equality, because itβs a function! However, by using the decision procedure, we get better computational behaviour: Very often, will be and substitution along is easy to deal with.
F : Functor _ _
F .Fβ = f
F .Fβ {x} {y} p = go p (x β‘α΅’? y)Proving that our our is functorial involves a bunch of tedious computations with equalities and a whole waterfall of absurd cases:
F .F-id {x} = refl
F .F-β {x} {y} {z} f g =
J (Ξ» y g β β {z} (f : y β‘ z) β go (g β f) (x β‘α΅’? z) β‘ go f (y β‘α΅’? z) C.β go g (x β‘α΅’? y))
(Ξ» f β J (Ξ» z f β go (refl β f) (x β‘α΅’? z) β‘ go f (x β‘α΅’? z) C.β C.id) (sym (C.idr _)) f)
g fDisc-adjunct
: β {iss : is-groupoid X}
β (X β Ob C)
β Functor (Disc X iss) C
Disc-adjunct {C = C} F .Fβ = F
Disc-adjunct {C = C} F .Fβ p = subst (C .Hom (F _) β F) p (C .id)
Disc-adjunct {C = C} F .F-id = transport-refl _
Disc-adjunct {C = C} {iss = iss} F .F-β {x} {y} {z} f g = path where
import Cat.Reasoning C as C
go = Disc-adjunct {C = C} {iss} F .Fβ
abstract
path : go (g β f) β‘ C ._β_ (go f) (go g)
path =
J' (Ξ» y z f β β {x} (g : x β‘ y) β go (g β f) β‘ go f C.β go g)
(Ξ» x g β subst-β (C .Hom (F _) β F) _ _ _
Β·Β· transport-refl _
Β·Β· C.introl (transport-refl _))
f {x} g
Disc-into
: β {β} (X : Set β)
β (F : C .Ob β β£ X β£)
β (Fβ : β {x y} β C .Hom x y β F x β‘ F y)
β Functor C (Disc' X)
Disc-into X F Fβ .Fβ = F
Disc-into X F Fβ .Fβ = Fβ
Disc-into X F Fβ .F-id = X .is-tr _ _ _ _
Disc-into X F Fβ .F-β _ _ = X .is-tr _ _ _ _Disc-natural
: β {X : Set β}
β {F G : Functor (Disc' X) C}
β (β x β C .Hom (F .Fβ x) (G .Fβ x))
β F => G
Disc-natural fam .Ξ· = fam
Disc-natural {C = C} {F = F} {G = G} fam .is-natural x y f =
J (Ξ» y p β fam y C.β F .Fβ p β‘ G .Fβ p C.β fam x)
(C.elimr (F .F-id) β C.introl (G .F-id))
f
where module C = Cat.Reasoning C
Disc-naturalβ
: β {X : Type β} {Y : Type β'}
β {issx : is-groupoid X} {issy : is-groupoid Y}
β {F G : Functor (Disc X issx ΓαΆ Disc Y issy) C}
β ((x : X Γ Y) β C .Hom (F .Fβ x) (G .Fβ x))
β F => G
Disc-naturalβ fam .Ξ· = fam
Disc-naturalβ {C = C} {F = F} {G = G} fam .is-natural x y (p , q) =
J (Ξ» y' p' β fam y' C.β F .Fβ (ap fst p' , ap snd p')
β‘ G .Fβ (ap fst p' , ap snd p') C.β fam x)
(C.elimr (F .F-id) β C.introl (G .F-id))
(Ξ£-pathp p q)
where module C = Cat.Reasoning C