module Cat.Functor.Kan.Base whereprivate
variable
o ℓ : Level
C C' D E : Precategory o ℓ
kan-lvl : ∀ {o ℓ o' ℓ' o'' ℓ''} {C : Precategory o ℓ} {C' : Precategory o' ℓ'} {D : Precategory o'' ℓ''}
→ Functor C D → Functor C C' → Level
kan-lvl {a} {b} {c} {d} {e} {f} _ _ = a ⊔ b ⊔ c ⊔ d ⊔ e ⊔ f
open _=>_Left Kan extensions🔗
Suppose we have a functor and a functor — perhaps to be thought of as a full subcategory inclusion, where is a completion of but the situation applies just as well to any pair of functors — which naturally fit into a commutative diagram
but as we can see this is a particularly sad commutative diagram; it’s crying out for a third edge
extending to a functor If there exists an universal such extension (we’ll define what “universal” means in just a second), we call it the left Kan extension of along and denote it Such extensions do not come for free (in a sense they’re pretty hard to come by), but concept of Kan extension can be used to rephrase the definition of both limit and adjoint functor.
A left Kan extension is equipped with a natural transformation witnessing the (“directed”) commutativity of the triangle (so that it need not commute on-the-nose) which is universal among such transformations; Meaning that if is another functor with a transformation there is a unique natural transformation which commutes with
Note that in general the triangle commutes “weakly”, but when is fully faithful and is cocomplete, genuinely extends in that is a natural isomorphism.
record
is-lan (p : Functor C C') (F : Functor C D) (L : Functor C' D) (eta : F => L F∘ p)
: Type (kan-lvl p F) where
fieldUniversality of eta is witnessed
by the following fields, which essentially say that, in the diagram
below (assuming
has a natural transformation
witnessing the same “directed commutativity” that
does for
the 2-cell exists and is unique.
σ : {M : Functor C' D} (α : F => M F∘ p) → L => M
σ-comm : {M : Functor C' D} {α : F => M F∘ p} → (σ α ◂ p) ∘nt eta ≡ α
σ-uniq : {M : Functor C' D} {α : F => M F∘ p} {σ' : L => M}
→ α ≡ (σ' ◂ p) ∘nt eta
→ σ α ≡ σ'
σ-uniq₂
: {M : Functor C' D} (α : F => M F∘ p) {σ₁' σ₂' : L => M}
→ α ≡ (σ₁' ◂ p) ∘nt eta
→ α ≡ (σ₂' ◂ p) ∘nt eta
→ σ₁' ≡ σ₂'
σ-uniq₂ β p q = sym (σ-uniq p) ∙ σ-uniq q
σ-uniqp
: ∀ {M₁ M₂ : Functor C' D}
→ {α₁ : F => M₁ F∘ p} {α₂ : F => M₂ F∘ p}
→ (q : M₁ ≡ M₂)
→ PathP (λ i → F => q i F∘ p) α₁ α₂
→ PathP (λ i → L => q i) (σ α₁) (σ α₂)
σ-uniqp q r = Nat-pathp refl q λ c' i →
σ {M = q i} (r i) .η c'
open _=>_ etaWe also provide a bundled form of this data.
record Lan (p : Functor C C') (F : Functor C D) : Type (kan-lvl p F) where
field
Ext : Functor C' D
eta : F => Ext F∘ p
has-lan : is-lan p F Ext eta
module Ext = Func Ext
open is-lan has-lan publicRight Kan extensions🔗
Our choice of universal property in the section above isn’t the only choice; we could instead require a terminal solution to the lifting problem, instead of an initial one. We can picture the terminal situation using the following diagram.
Note the same warnings about “weak, directed” commutativity as for left Kan extensions apply here, too. Rather than either of the triangles commuting on the nose, we have natural transformations witnessing their commutativity.
record is-ran
(p : Functor C C') (F : Functor C D) (Ext : Functor C' D)
(eps : Ext F∘ p => F)
: Type (kan-lvl p F) where
no-eta-equality
field
σ : {M : Functor C' D} (α : M F∘ p => F) → M => Ext
σ-comm : {M : Functor C' D} {β : M F∘ p => F} → eps ∘nt (σ β ◂ p) ≡ β
σ-uniq : {M : Functor C' D} {β : M F∘ p => F} {σ' : M => Ext}
→ β ≡ eps ∘nt (σ' ◂ p)
→ σ β ≡ σ'
open _=>_ eps renaming (η to ε)
σ-uniq₂
: {M : Functor C' D} (β : M F∘ p => F) {σ₁' σ₂' : M => Ext}
→ β ≡ eps ∘nt (σ₁' ◂ p)
→ β ≡ eps ∘nt (σ₂' ◂ p)
→ σ₁' ≡ σ₂'
σ-uniq₂ β p q = sym (σ-uniq p) ∙ σ-uniq q
record Ran (p : Functor C C') (F : Functor C D) : Type (kan-lvl p F) where
no-eta-equality
field
Ext : Functor C' D
eps : Ext F∘ p => F
has-ran : is-ran p F Ext eps
module Ext = Func Ext
open is-ran has-ran publicmodule _ {p : Functor C C'} {F : Functor C D} {G : Functor C' D} {eta : F => G F∘ p} where
is-lan-is-prop : is-prop (is-lan p F G eta)
is-lan-is-prop a b = path where
private
module a = is-lan a
module b = is-lan b
σ≡ : {M : Functor _ _} (α : F => M F∘ p) → a.σ α ≡ b.σ α
σ≡ α = ext (a.σ-uniq (sym b.σ-comm) ηₚ_)
open is-lan
path : a ≡ b
path i .σ α = σ≡ α i
path i .σ-comm {α = α} =
is-prop→pathp (λ i → Nat-is-set ((σ≡ α i ◂ p) ∘nt eta) α)
(a.σ-comm {α = α}) (b.σ-comm {α = α})
i
path i .σ-uniq {α = α} β =
is-prop→pathp (λ i → Nat-is-set (σ≡ α i) _)
(a.σ-uniq β) (b.σ-uniq β)
i
instance
H-Level-is-lan : ∀ {k} → H-Level (is-lan p F G eta) (suc k)
H-Level-is-lan = prop-instance is-lan-is-prop
module _ {p : Functor C C'} {F : Functor C D} {G : Functor C' D} {eps : G F∘ p => F} where
is-ran-is-prop : is-prop (is-ran p F G eps)
is-ran-is-prop a b = path where
private
module a = is-ran a
module b = is-ran b
σ≡ : {M : Functor _ _} (α : M F∘ p => F) → a.σ α ≡ b.σ α
σ≡ α = ext (a.σ-uniq (sym b.σ-comm) ηₚ_)
open is-ran
path : a ≡ b
path i .σ α = σ≡ α i
path i .σ-comm {β = α} =
is-prop→pathp (λ i → Nat-is-set (eps ∘nt (σ≡ α i ◂ p)) α)
(a.σ-comm {β = α}) (b.σ-comm {β = α})
i
path i .σ-uniq {β = α} γ =
is-prop→pathp (λ i → Nat-is-set (σ≡ α i) _)
(a.σ-uniq γ) (b.σ-uniq γ)
i
instance
H-Level-is-ran : ∀ {k} → H-Level (is-ran p F G eps) (suc k)
H-Level-is-ran = prop-instance is-ran-is-propPreservation and reflection of Kan extensions🔗
Let be the left Kan extension of along and suppose that is a functor. We can “apply” to all the data of the Kan extension, obtaining the following diagram.
This looks like yet another Kan extension diagram, but it may not be universal! If this diagram is a left Kan extension, we say that preserves
module _
{p : Functor C C'} {F : Functor C D} {G : Functor C' D} {eta : F => G F∘ p} where preserves-lan : (H : Functor D E) → is-lan p F G eta → Type _
preserves-lan H _ =
is-lan p (H F∘ F) (H F∘ G) (nat-assoc-to (H ▸ eta))In the diagram above, the 2-cell is simply the whiskering Unfortunately, proof assistants; our definition of whiskering lands in but we require a natural transformation to
We say that a Kan extension is absolute if it is preserved by all functors out of An important class of examples is given by adjoint functors.
is-absolute-lan : is-lan p F G eta → Typeω
is-absolute-lan lan =
{o ℓ : Level} {E : Precategory o ℓ} (H : Functor D E) → preserves-lan H lanIt may also be the case that is already a left kan extension of along We say that reflects this Kan extension if is a also a left extension of along
reflects-lan
: (H : Functor D E)
→ is-lan p (H F∘ F) (H F∘ G) (nat-assoc-to (H ▸ eta))
→ Type _
reflects-lan _ _ =
is-lan p F G etamodule _
{p : Functor C C'} {F : Functor C D} {G : Functor C' D} {eps : G F∘ p => F} whereWe can define dual notions for right Kan extensions as well.
preserves-ran : (H : Functor D E) → is-ran p F G eps → Type _
preserves-ran H _ =
is-ran p (H F∘ F) (H F∘ G) (nat-assoc-from (H ▸ eps))
is-absolute-ran : is-ran p F G eps → Typeω
is-absolute-ran ran =
{o ℓ : Level} {E : Precategory o ℓ} (H : Functor D E) → preserves-ran H ran
reflects-ran
: (H : Functor D E)
→ is-ran p (H F∘ F) (H F∘ G) (nat-assoc-from (H ▸ eps))
→ Type _
reflects-ran _ _ =
is-ran p F G epsto-lan
: ∀ {p : Functor C C'} {F : Functor C D} {L : Functor C' D} {eta : F => L F∘ p}
→ is-lan p F L eta
→ Lan p F
to-lan {L = L} lan .Lan.Ext = L
to-lan {eta = eta} lan .Lan.eta = eta
to-lan lan .Lan.has-lan = lan