module Cat.Diagram.Product.Indexed {o ℓ} (C : Precategory o ℓ) whereimport Cat.Reasoning C as C
private variable
o' ℓ' : Level
Idx : Type ℓ'
A B P : C.ObIndexed products🔗
If a category admits a terminal object and binary products, then it admits products of any finite cardinality: iterate the binary product, and use the terminal object when there aren’t any objects. However, these two classes of limit do not let us speak of products of arbitrary cardinality, or, in the univalent context, indexed by types which are not sets.
That’s where products come in: Rather than having a functor giving the objects to take the limit over, we have an arbitrary map from to the space of objects of An indexed product for this “diagram” is then an object admitting an universal family of maps
record is-indexed-product (F : Idx → C.Ob) (π : ∀ i → C.Hom P (F i))
: Type (o ⊔ ℓ ⊔ level-of Idx) where
no-eta-equality
field
tuple : ∀ {Y} → (∀ i → C.Hom Y (F i)) → C.Hom Y P
commute : ∀ {i} {Y} {f : ∀ i → C.Hom Y (F i)} → π i C.∘ tuple f ≡ f i
unique : ∀ {Y} {h : C.Hom Y P} (f : ∀ i → C.Hom Y (F i))
→ (∀ i → π i C.∘ h ≡ f i)
→ h ≡ tuple f
eta : ∀ {Y} (h : C.Hom Y P) → h ≡ tuple λ i → π i C.∘ h
eta h = unique _ λ _ → refl
unique₂ : ∀ {Y} {g h : C.Hom Y P} → (∀ i → π i C.∘ g ≡ π i C.∘ h) → g ≡ h
unique₂ {g = g} {h} eq = eta g ∙ ap tuple (funext eq) ∙ sym (eta h)
hom-iso : ∀ {Y} → C.Hom Y P ≃ (∀ i → C.Hom Y (F i))
hom-iso = (λ f i → π i C.∘ f) , is-iso→is-equiv λ where
.is-iso.inv → tuple
.is-iso.rinv x → funext λ i → commute
.is-iso.linv x → sym (unique _ λ _ → refl)A category admits indexed products (of level if, for any type and family there is an indexed product of
record Indexed-product (F : Idx → C.Ob) : Type (o ⊔ ℓ ⊔ level-of Idx) where
no-eta-equality
field
{ΠF} : C.Ob
π : ∀ i → C.Hom ΠF (F i)
has-is-ip : is-indexed-product F π
open is-indexed-product has-is-ip publicmodule _ {ℓ'} {I : Type ℓ'} (F : I → C .Precategory.Ob) (ip : Indexed-product F) where
private module ip = Indexed-product ip
tuple∘ : ∀ {A B} (f : ∀ i → C.Hom B (F i))
{g : C.Hom A B}
→ ip.tuple f C.∘ g ≡ ip.tuple λ i → f i C.∘ g
tuple∘ f = ip.unique _ λ i → C.pulll ip.commute
Indexed-product-≃
: ∀ {ℓ ℓ'} {I : Type ℓ} {J : Type ℓ'} → (e : I ≃ J)
→ {F : I → C.Ob} → Indexed-product (F ⊙ Equiv.from e) → Indexed-product F
Indexed-product-≃ e {F} p = λ where
.ΠF → p .ΠF
.π j → C.to (path→iso (ap F (e.η _))) C.∘ p .π (e.to j)
.has-is-ip .tuple f → p .tuple (f ⊙ e.from)
.has-is-ip .commute {f = f} →
C.pullr (p .commute) ∙ from-pathp-to C _ (ap f (e.η _))
.has-is-ip .unique f comm → p .unique _ λ j →
ap (C._∘ _) (sym (from-pathp-to C _ (ap (p .π) (e.ε j)))
∙ ap (λ z → C.to (path→iso (ap F z)) C.∘ p .π _) (e.zag j))
∙ comm (e.from j)
where
open Indexed-product
open is-indexed-product
module e = Equiv e
Lift-Indexed-product
: ∀ {ℓ} ℓ' → {I : Type ℓ} → {F : I → C.Ob}
→ Indexed-product {Idx = Lift ℓ' I} (F ⊙ lower)
→ Indexed-product F
Lift-Indexed-product _ {F = F} ip = mk where
open Indexed-product
open is-indexed-product
module i = Indexed-product ip
mk : Indexed-product F
mk .ΠF = i.ΠF
mk .π i = i.π (lift i)
mk .has-is-ip .tuple x = i.tuple (λ j → x (j .lower))
mk .has-is-ip .commute = i.commute
mk .has-is-ip .unique p q = i.unique _ (λ i → q (i .lower))
is-indexed-product-is-prop
: ∀ {ℓ'} {Idx : Type ℓ'}
→ {F : Idx → C.Ob} {ΠF : C.Ob} {π : ∀ idx → C.Hom ΠF (F idx)}
→ is-prop (is-indexed-product F π)
is-indexed-product-is-prop {Idx = Idx} {F = F} {ΠF = ΠF} {π = π} P Q = path where
open is-indexed-product
p : ∀ {X} → (f : (i : Idx) → C.Hom X (F i)) → P .tuple f ≡ Q .tuple f
p f = Q .unique f (λ idx → P .commute)
path : P ≡ Q
path i .tuple f = p f i
path i .commute {i = idx} {f = f} =
is-prop→pathp (λ i → C.Hom-set _ _ (π idx C.∘ p f i) (f idx))
(P .commute)
(Q .commute) i
path i .unique {h = h} f q =
is-prop→pathp (λ i → C.Hom-set _ _ h (p f i))
(P .unique f q)
(Q .unique f q) i
module _ {ℓ'} {Idx : Type ℓ'} {F : Idx → C.Ob} {P P' : Indexed-product F} where
private
module P = Indexed-product P
module P' = Indexed-product P'
Indexed-product-path
: (p : P.ΠF ≡ P'.ΠF)
→ (∀ idx → PathP (λ i → C.Hom (p i) (F idx)) (P.π idx) (P'.π idx))
→ P ≡ P'
Indexed-product-path p q i .Indexed-product.ΠF = p i
Indexed-product-path p q i .Indexed-product.π idx = q idx i
Indexed-product-path p q i .Indexed-product.has-is-ip =
is-prop→pathp (λ i → is-indexed-product-is-prop {ΠF = p i} {π = λ idx → q idx i})
P.has-is-ip
P'.has-is-ip iUniqueness🔗
As is traditional with universal constructions, “having an indexed product for a diagram” is property of a category, not structure: Put another way, for any particular diagram, in a univalent category, there is (at most) a contractible space of indexed products of that diagram. And again as is traditional with universal constructions, the proof is surprisingly straightforward!
First, a general result: if two objects are both indexed products over the same family of objects, then those objects are isomorphic. This isomorphism is induced by the universal properties, and is readily seen to commute with both projections:
is-indexed-product→iso
: ∀ {ℓ'} {Idx : Type ℓ'} {F : Idx → C.Ob}
→ {ΠF ΠF' : C.Ob}
→ {π : ∀ i → C.Hom ΠF (F i)} {π' : ∀ i → C.Hom ΠF' (F i)}
→ is-indexed-product F π
→ is-indexed-product F π'
→ ΠF C.≅ ΠF'
is-indexed-product→iso {π = π} {π' = π'} ΠF-prod ΠF'-prod =
C.make-iso (ΠF'.tuple π) (ΠF.tuple π')
(ΠF'.unique₂ (λ i → C.pulll ΠF'.commute ∙ ΠF.commute ∙ sym (C.idr _)))
(ΠF.unique₂ λ i → C.pulll ΠF.commute ∙ ΠF'.commute ∙ sym (C.idr _))
where
module ΠF = is-indexed-product ΠF-prod
module ΠF' = is-indexed-product ΠF'-prodIndexed-product→iso
: ∀ {ℓ'} {Idx : Type ℓ'} {F : Idx → C.Ob}
→ (P P' : Indexed-product F)
→ Indexed-product.ΠF P C.≅ Indexed-product.ΠF P'
Indexed-product→iso P P' =
is-indexed-product→iso
(Indexed-product.has-is-ip P)
(Indexed-product.has-is-ip P')With that out of the way, we can proceed to show our original result! First, note that paths between indexed products are determined by a path between apices, and a corresponding path-over between projections. We can upgrade the iso from our previous lemma into a path, so all that remains is to construct the path-over.
Indexed-product-unique
: ∀ {ℓ'} {I : Type ℓ'} (F : I → C.Ob)
→ is-category C → is-prop (Indexed-product F)
Indexed-product-unique {I = I} F c-cat x y =
Indexed-product-path
(c-cat .to-path apices)
pres
where
module x = Indexed-product x
module y = Indexed-product y
apices : x.ΠF C.≅ y.ΠF
apices = Indexed-product→iso x yBy the characterisation of paths-over in Hom-sets, we get paths-over between the projection maps and the product maps:
module apices = C._≅_ apices
abstract
pres : ∀ j → PathP (λ i → C.Hom (c-cat .to-path apices i) (F j)) (x.π j) (y.π j)
pres j = Univalent.Hom-pathp-refll-iso c-cat x.commuteWe can also prove the converse direction: if indexed products in are unique, then is univalent. In fact, we only need limits of one-object diagrams to be unique.
unique-products→is-category
: ({x : C.Ob} → is-prop (Indexed-product {Idx = ⊤} (λ _ → x)))
→ is-category C
unique-products→is-category prop = cat whereGiven an isomorphism we build two products for the one-object diagram one with apex itself and identity as projection, and one with apex and the given isomorphism as projection.
module _ {a b : C.Ob} (is : a C.≅ b) where
open Indexed-product
open is-indexed-product
Pa : Indexed-product {Idx = ⊤} (λ _ → a)
Pa .ΠF = a
Pa .π _ = C.id
Pa .has-is-ip .tuple f = f _
Pa .has-is-ip .commute = C.idl _
Pa .has-is-ip .unique f p = sym (C.idl _) ∙ p _
Pb : Indexed-product {Idx = ⊤} (λ _ → a)
Pb .ΠF = b
Pb .π _ = is .C.from
Pb .has-is-ip .tuple f = is .C.to C.∘ f _
Pb .has-is-ip .commute = C.cancell (is .C.invr)
Pb .has-is-ip .unique f p = sym (C.lswizzle (sym (p _)) (is .C.invl))By uniqueness, the two products are equal, which gives us an equality lying over our isomorphism.
path : a ≡ b
path = ap ΠF (prop Pa Pb)
path-over : PathP (λ i → a C.≅ path i) C.id-iso is
path-over = C.≅-pathp-from _ _ (ap (λ p → p .π _) (prop Pa Pb))
cat : is-category C
cat .to-path = path
cat .to-path-over = path-overProperties🔗
Let be a family of objects in If the the indexed products and exists, then they are isomorphic.
is-indexed-product-assoc
: ∀ {κ κ'} {A : Type κ} {B : A → Type κ'}
→ {X : Σ A B → C.Ob}
→ {ΠᵃᵇX : C.Ob} {ΠᵃΠᵇX : C.Ob} {ΠᵇX : A → C.Ob}
→ {πᵃᵇ : (ab : Σ A B) → C.Hom ΠᵃᵇX (X ab)}
→ {πᵃ : ∀ a → C.Hom ΠᵃΠᵇX (ΠᵇX a)}
→ {πᵇ : ∀ a → (b : B a) → C.Hom (ΠᵇX a) (X (a , b))}
→ is-indexed-product X πᵃᵇ
→ is-indexed-product ΠᵇX πᵃ
→ (∀ a → is-indexed-product (λ b → X (a , b)) (πᵇ a))
→ ΠᵃᵇX C.≅ ΠᵃΠᵇXThe proof is surprisingly straightforward: as indexed products are unique up to iso, it suffices to show that is an indexed product over
is-indexed-product-assoc {A = A} {B} {X} {ΠᵃΠᵇX = ΠᵃΠᵇX} {πᵃ = πᵃ} {πᵇ} Πᵃᵇ ΠᵃΠᵇ Πᵇ =
is-indexed-product→iso Πᵃᵇ Πᵃᵇ'
where
open is-indexed-productWe can construct projections by composing the projections out of each successive product.
πᵃᵇ' : ∀ (ab : Σ A B) → C.Hom ΠᵃΠᵇX (X ab)
πᵃᵇ' (a , b) = πᵇ a b C.∘ πᵃ aThe rest of the structure follows a similar pattern.
Πᵃᵇ' : is-indexed-product X πᵃᵇ'
Πᵃᵇ' .tuple f = ΠᵃΠᵇ .tuple λ a → Πᵇ a .tuple λ b → f (a , b)
Πᵃᵇ' .commute = C.pullr (ΠᵃΠᵇ .commute) ∙ Πᵇ _ .commute
Πᵃᵇ' .unique {h = h} f p =
ΠᵃΠᵇ .unique _ λ a →
Πᵇ _ .unique _ λ b →
C.assoc _ _ _ ∙ p (a , b)Categories with all indexed products🔗
has-products-indexed-by : ∀ {ℓ} (I : Type ℓ) → Type _
has-products-indexed-by I = ∀ (F : I → C.Ob) → Indexed-product F
has-indexed-products : ∀ ℓ → Type _
has-indexed-products ℓ = ∀ {I : Type ℓ} → has-products-indexed-by I
module Indexed-products
{κ : Level}
(has-ip : has-indexed-products κ)
where
module ∏ {Idx : Type κ} (F : Idx → C.Ob) = Indexed-product (has-ip F)
open ∏ renaming (commute to π-commute; unique to tuple-unique) public