module Cat.Diagram.Coproduct.Copower whereCopowers🔗
Let be a category admitting indexed coproducts, for example a cocomplete category. In the same way that (in ordinary arithmetic) the iterated product of a bunch of copies of the same factor
is called a “power”, we refer to the coproduct of many copies of an object indexed by a set as the copower of by and alternatively denote it If does indeed admit coproducts indexed by any set, then the copowering construction extends to a functor
The notion of copowering gives us slick terminology for a category which admits all coproducts, but not necessarily all colimits: Such a category is precisely one copowered over
module Copowers
  {o ℓ} {C : Precategory o ℓ}
  (coprods : (S : Set ℓ) → has-coproducts-indexed-by C ∣ S ∣)
  where
  open Indexed-coproduct
  open Cat.Reasoning C
  open Functor  _⊗_ : Set ℓ → Ob → Ob
  X ⊗ A = coprods X (λ _ → A) .ΣFCopowers satisfy a universal property: is a representing object for the functor that takes an object to the power of the set of morphisms from to in other words, we have a natural isomorphism
  copower-hom-iso
    : ∀ {X A}
    → Hom-from C (X ⊗ A) ≅ⁿ Hom-from (Sets ℓ) X F∘ Hom-from C A
  copower-hom-iso {X} {A} = iso→isoⁿ
    (λ _ → equiv→iso (hom-iso (coprods X (λ _ → A))))
    (λ _ → ext λ _ _ → assoc _ _ _)The action of the copowering functor is given by simultaneously changing the indexing along a function of sets and changing the underlying object by a morphism This is functorial by the uniqueness properties of colimiting maps.
  Copowering : Functor (Sets ℓ ×ᶜ C) C
  Copowering .F₀ (X , A) = X ⊗ A
  Copowering .F₁ {X , A} {Y , B} (idx , obj) =
    coprods X (λ _ → A) .match λ i → coprods Y (λ _ → B) .ι (idx i) ∘ obj
  Copowering .F-id {X , A} = sym $
    coprods X (λ _ → A) .unique _ λ i → sym id-comm
  Copowering .F-∘ {X , A} f g = sym $
    coprods X (λ _ → A) .unique _ λ i →
      pullr (coprods _ _ .commute) ∙ extendl (coprods _ _ .commute)  ∐! : (Idx : Type ℓ) ⦃ hl : H-Level Idx 2 ⦄ (F : Idx → Ob) → Ob
  ∐! Idx F = ΣF (coprods (el! Idx) F)
  module ∐! (Idx : Type ℓ) ⦃ hl : H-Level Idx 2 ⦄ (F : Idx → Ob) =
    Indexed-coproduct (coprods (el! Idx) F)
  _⊗!_ : (Idx : Type ℓ) ⦃ hl : H-Level Idx 2 ⦄ → Ob → Ob
  I ⊗! X = el! I ⊗ X
  module ⊗! (Idx : Type ℓ) ⦃ hl : H-Level Idx 2 ⦄ (X : Ob) =
    Indexed-coproduct (coprods (el! Idx) (λ _ → X))cocomplete→copowering
  : ∀ {o ℓ} {C : Precategory o ℓ}
  → is-cocomplete ℓ ℓ C → Functor (Sets ℓ ×ᶜ C) C
cocomplete→copowering colim = Copowers.Copowering λ S F →
  Colimit→IC _ (is-hlevel-suc 2 (S .is-tr)) F (colim _)Constant objects🔗
If has a terminal object then the copower is referred to as the constant object on By simplifying the universal property of the copower, we obtain that constant objects assemble into a functor left adjoint to 1
module Consts
  {o ℓ} {C : Precategory o ℓ}
  (term : Terminal C)
  (coprods : (S : Set ℓ) → has-coproducts-indexed-by C ∣ S ∣)
  where
  open Indexed-coproduct
  open Cat.Reasoning C
  open Copowers coprods
  open Functor
  open Terminal term renaming (top to *C)  Constant-objects : Functor (Sets ℓ) C
  Constant-objects .F₀ S = S ⊗ *C
  Constant-objects .F₁ f = coprods _ _ .match λ i → coprods _ _ .ι (f i)
  Constant-objects .F-id = sym $ coprods _ _ .unique _ λ i → idl _
  Constant-objects .F-∘ f g = sym $ coprods _ _ .unique _ λ i →
    pullr (coprods _ _ .commute) ∙ coprods _ _ .commute
  Const⊣Γ : Constant-objects ⊣ Hom-from _ *C
  Const⊣Γ = hom-iso→adjoints
    (λ f x → f ∘ coprods _ _ .ι x)
    (is-iso→is-equiv (iso
      (λ h → coprods _ _ .match h)
      (λ h → ext λ i → coprods _ _ .commute)
      (λ x → sym (coprods _ _ .unique _ λ i → refl))))
    (λ g h x → ext λ y → pullr (pullr (coprods _ _ .commute)))- This right adjoint is often called the global sections functor.↩︎