module Cat.Diagram.Coequaliser wheremodule _ {o β} (C : Precategory o β) where
open Cat.Reasoning C
private variable
A B : Ob
f g h : Hom A BCoequalisersπ
The coequaliser of two maps (if it exists), represents the largest quotient object of that identifies and
record is-coequaliser {E} (f g : Hom A B) (coeq : Hom B E) : Type (o β β) where
field
coequal : coeq β f β‘ coeq β g
universal : β {F} {e' : Hom B F} (p : e' β f β‘ e' β g) β Hom E F
factors : β {F} {e' : Hom B F} {p : e' β f β‘ e' β g}
β universal p β coeq β‘ e'
unique : β {F} {e' : Hom B F} {p : e' β f β‘ e' β g} {colim : Hom E F}
β colim β coeq β‘ e'
β colim β‘ universal p
uniqueβ
: β {F} {e' : Hom B F} {o1 o2 : Hom E F}
β (e' β f β‘ e' β g)
β o1 β coeq β‘ e'
β o2 β coeq β‘ e'
β o1 β‘ o2
uniqueβ p q r = unique {p = p} q β sym (unique r)
id-coequalise : id β‘ universal coequal
id-coequalise = unique (idl _)There is also a convenient bundling of an coequalising arrow together with its codomain:
record Coequaliser (f g : Hom A B) : Type (o β β) where
field
{coapex} : Ob
coeq : Hom B coapex
has-is-coeq : is-coequaliser f g coeq
open is-coequaliser has-is-coeq publicCoequalisers are epicπ
Dually to the situation with equalisers, coequaliser arrows are always epic.
module _ {o β} {C : Precategory o β} where
open Cat.Reasoning C
private variable
A B : Ob
f g h : Hom A B is-coequaliserβis-epic
: β {E} (coequ : Hom A E)
β is-coequaliser C f g coequ
β is-epic coequ
is-coequaliserβis-epic {f = f} {g = g} equ equalises h i p =
h β‘β¨ unique p β©
universal (extendr coequal) β‘Λβ¨ unique refl β©
i β
where open is-coequaliser equalises
coequaliser-unique
: β {E E'} {c1 : Hom A E} {c2 : Hom A E'}
β is-coequaliser C f g c1
β is-coequaliser C f g c2
β E β
E'
coequaliser-unique {c1 = c1} {c2} co1 co2 =
make-iso
(co1 .universal {e' = c2} (co2 .coequal))
(co2 .universal {e' = c1} (co1 .coequal))
(uniqueβ co2 (co2 .coequal) (pullr (co2 .factors) β co1 .factors) (idl _))
(uniqueβ co1 (co1 .coequal) (pullr (co1 .factors) β co2 .factors) (idl _))
where open is-coequaliserCategories with all coequalisersπ
We also define a helper module for working with categories that have coequalisers of all parallel pairs of morphisms.
has-coequalisers : β {o β} β Precategory o β β Type _
has-coequalisers C = β {a b} (f g : Hom a b) β Coequaliser C f g
where open Precategory C
module Coequalisers
{o β}
(C : Precategory o β)
(all-coequalisers : has-coequalisers C)
where
open Cat.Reasoning C
module coequaliser {a b} (f g : Hom a b) = Coequaliser (all-coequalisers f g)
Coequ : β {a b} (f g : Hom a b) β Ob
Coequ = coequaliser.coapex