module 1Lab.Resizing wherePropositional resizing🔗
Ordinarily, the collection of all predicates on types lives in the next universe up, This is because predicates are not special in type theory: they are ordinary type families, that just so happen to be valued in propositions. For most purposes we can work with this limitation: this is called predicative mathematics. But, for a few classes of theorems, predicativity is too restrictive: Even if we don’t have a single universe of propositions that can accommodate all predicates, we would still like for universes to be closed under power-sets.
Using some of Agda’s more suspicious features, we can achieve this in
a way which does not break computation too much. Specifically, we’ll use
a combination of NO_UNIVERSE_CHECK, postulates, and rewrite
rules.
We start with the NO_UNIVERSE_CHECK part: We define the
small type of propositions, Ω, to be a
record containing a Type (together with an irrelevant proof
that this type is a proposition), but contrary to the universe checker,
which would like us to put Ω : Type₁, we instead force
Ω : Type.
{-# NO_UNIVERSE_CHECK #-}
record Ω : Type where
constructor el
field
∣_∣ : Type
is-tr : is-prop ∣_∣
open Ω publicThis type, a priori, only contains the propositions whose underlying
type lives in the first universe. However, we can populate it using a
NO_UNIVERSE_CHECK-powered higher inductive type, the “small
propositional
truncation”:
{-# NO_UNIVERSE_CHECK #-}
data □ {ℓ} (A : Type ℓ) : Type where
inc : A → □ A
squash : (x y : □ A) → x ≡ yJust like the ordinary propositional truncation, every type can be
squashed, but unlike the ordinary propositional truncation, the □-squashing of a type always lives in the
lowest universe. If
is a proposition in any universe,
is its name in the zeroth universe.
instance
H-Level-□ : ∀ {ℓ} {T : Type ℓ} {n} → H-Level (□ T) (suc n)
H-Level-□ = prop-instance squash
open hlevel-projection
Ω-hlevel-proj : hlevel-projection (quote Ω.∣_∣)
Ω-hlevel-proj .has-level = quote Ω.is-tr
Ω-hlevel-proj .get-level x = pure (quoteTerm (suc zero))
Ω-hlevel-proj .get-argument (arg _ t ∷ _) = pure t
Ω-hlevel-proj .get-argument _ = typeError []We can also prove a univalence principle for Ω: if
are logically equivalent, then they
are equal.
Ω-ua : {A B : Ω} → ∣ A ∣ ↔ ∣ B ∣ → A ≡ B
Ω-ua {A} {B} f i .∣_∣ = ua (prop-ext! (Biimp.to f) (Biimp.from f)) i
Ω-ua {A} {B} f i .is-tr =
is-prop→pathp (λ i → is-prop-is-prop {A = ua (prop-ext! (Biimp.to f) (Biimp.from f)) i})
(A .is-tr) (B .is-tr) i
instance abstract
H-Level-Ω : ∀ {n} → H-Level Ω (2 + n)
H-Level-Ω = basic-instance 2 $ retract→is-hlevel 2
(λ r → el ∣ r ∣ (r .is-tr))
(λ r → el ∣ r ∣ (r .is-tr))
(λ x → Ω-ua id↔)
(n-Type-is-hlevel {lzero} 1)instance
Extensionality-Ω : Extensional Ω lzero
Extensionality-Ω .Pathᵉ A B = ∣ A ∣ ↔ ∣ B ∣
Extensionality-Ω .reflᵉ A = id↔
Extensionality-Ω .idsᵉ = set-identity-system (λ _ _ → hlevel 1) Ω-uaThe □ type former is a functor
(in the handwavy sense that it supports a “map” operation), and can be
projected from into propositions of any universe. These functions
compute on incs, as usual.
□-map : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'}
→ (A → B) → □ A → □ B
□-map f (inc x) = inc (f x)
□-map f (squash x y i) = squash (□-map f x) (□-map f y) i
□-rec : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → is-prop B → (A → B) → □ A → B
□-rec bp f (inc x) = f x
□-rec bp f (squash x y i) = bp (□-rec bp f x) (□-rec bp f y) i
elΩ : ∀ {ℓ} (T : Type ℓ) → Ω
elΩ T .∣_∣ = □ T
elΩ T .is-tr = squash□-elim
: ∀ {ℓ ℓ'} {A : Type ℓ} {P : □ A → Type ℓ'}
→ (∀ x → is-prop (P x))
→ (∀ x → P (inc x))
→ ∀ x → P x
□-elim pprop go (inc x) = go x
□-elim pprop go (squash x y i) =
is-prop→pathp (λ i → pprop (squash x y i)) (□-elim pprop go x) (□-elim pprop go y) i
instance
Inductive-□
: ∀ {ℓ ℓ' ℓm} {A : Type ℓ} {P : □ A → Type ℓ'} ⦃ i : Inductive (∀ x → P (inc x)) ℓm ⦄
→ ⦃ _ : ∀ {x} → H-Level (P x) 1 ⦄
→ Inductive (∀ x → P x) ℓm
Inductive-□ ⦃ i ⦄ = record
{ methods = i .Inductive.methods
; from = λ f → □-elim (λ x → hlevel 1) (i .Inductive.from f)
}
□-out : ∀ {ℓ} {A : Type ℓ} → is-prop A → □ A → A
□-out ap = □-rec ap (λ x → x)
□-out!
: ∀ {ℓ} {A : Type ℓ}
→ ⦃ _ : H-Level A 1 ⦄
→ □ A → A
□-out! = rec! λ x → x
□-rec-set
: ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'}
→ is-set B
→ (f : A → B)
→ (∀ x y → f x ≡ f y)
→ □ A → B
□-rec-set B-set f f-const a =
fst $ □-elim
(λ _ → is-constant→image-is-prop B-set f f-const)
(λ a → f a , inc (a , refl))
a
□-idempotent : ∀ {ℓ} {A : Type ℓ} → is-prop A → □ A ≃ A
□-idempotent aprop = prop-ext squash aprop (□-out aprop) inc
□-ap
: ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'}
→ □ (A → B) → □ A → □ B
□-ap (inc f) (inc g) = inc (f g)
□-ap (inc f) (squash g g' i) = squash (□-ap (inc f) g) (□-ap (inc f) g') i
□-ap (squash f f' i) g = squash (□-ap f g) (□-ap f' g) i
□-bind
: ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'}
→ □ A → (A → □ B) → □ B
□-bind (inc x) f = f x
□-bind (squash x x' i) f = squash (□-bind x f) (□-bind x' f) i
instance
Map-□ : Map (eff □)
Map-□ .Map.map = □-map
Idiom-□ : Idiom (eff □)
Idiom-□ .Idiom.pure = inc
Idiom-□ .Idiom._<*>_ = □-ap
Bind-□ : Bind (eff □)
Bind-□ .Bind._>>=_ = □-bind
is-set→locally-small
: ∀ {ℓ} {A : Type ℓ}
→ is-set A
→ is-identity-system {A = A} (λ x y → □ (x ≡ y)) (λ x → inc refl)
is-set→locally-small a-set .to-path = □-rec (a-set _ _) id
is-set→locally-small a-set .to-path-over p = is-prop→pathp (λ _ → squash) _ _
to-is-true
: ∀ {P Q : Ω} ⦃ _ : H-Level ∣ Q ∣ 0 ⦄
→ ∣ P ∣
→ P ≡ Q
to-is-true prf = Ω-ua (biimp (λ _ → hlevel 0 .centre) λ _ → prf)
tr-□ : ∀ {ℓ} {A : Type ℓ} → ∥ A ∥ → □ A
tr-□ (inc x) = inc x
tr-□ (squash x y i) = squash (tr-□ x) (tr-□ y) i
□-tr : ∀ {ℓ} {A : Type ℓ} → □ A → ∥ A ∥
□-tr (inc x) = inc x
□-tr (squash x y i) = squash (□-tr x) (□-tr y) iConnectives🔗
The universe of small propositions contains true, false, conjunctions, disjunctions, and (bi)implications.
infixr 10 _∧Ω_
infixr 9 _∨Ω_
infixr 8 _→Ω_⊤Ω : Ω
∣ ⊤Ω ∣ = ⊤
⊤Ω .is-tr = hlevel 1
⊥Ω : Ω
∣ ⊥Ω ∣ = ⊥
⊥Ω .is-tr = hlevel 1
_∧Ω_ : Ω → Ω → Ω
∣ P ∧Ω Q ∣ = ∣ P ∣ × ∣ Q ∣
(P ∧Ω Q) .is-tr = hlevel 1
_∨Ω_ : Ω → Ω → Ω
∣ P ∨Ω Q ∣ = ∥ ∣ P ∣ ⊎ ∣ Q ∣ ∥
(P ∨Ω Q) .is-tr = hlevel 1
_→Ω_ : Ω → Ω → Ω
∣ P →Ω Q ∣ = ∣ P ∣ → ∣ Q ∣
(P →Ω Q) .is-tr = hlevel 1
_↔Ω_ : Ω → Ω → Ω
∣ P ↔Ω Q ∣ = ∣ P ∣ ↔ ∣ Q ∣
(P ↔Ω Q) .is-tr = hlevel 1
¬Ω_ : Ω → Ω
¬Ω P = P →Ω ⊥ΩFurthermore, we can quantify over types of arbitrary size and still
land in Ω.
∃Ω : ∀ {ℓ} (A : Type ℓ) → (A → Ω) → Ω
∣ ∃Ω A P ∣ = □ (Σ[ x ∈ A ] ∣ P x ∣)
∃Ω A P .is-tr = squash
∀Ω : ∀ {ℓ} (A : Type ℓ) → (A → Ω) → Ω
∣ ∀Ω A P ∣ = □ (∀ (x : A) → ∣ P x ∣)
∀Ω A P .is-tr = squash
syntax ∃Ω A (λ x → B) = ∃Ω[ x ∈ A ] B
syntax ∀Ω A (λ x → B) = ∀Ω[ x ∈ A ] Binstance
Extensional-Σ-□
: ∀ {ℓ ℓ' ℓr} {A : Type ℓ} {B : A → Type ℓ'}
→ ⦃ ea : Extensional A ℓr ⦄ → Extensional (Σ A λ x → □ (B x)) ℓr
Extensional-Σ-□ ⦃ ea ⦄ = Σ-prop-extensional (λ x → hlevel 1) eaThese connectives and quantifiers are only provided for completeness; if you find yourself building nested propositions, it is generally a good idea to construct the large proposition by hand, and then use truncation to turn it into a small proposition.
module _ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) where
Ω-image : Type ℓ'
Ω-image = Σ[ b ∈ B ] □ (fibre f b)
Ω-corestriction : A → Ω-image
Ω-corestriction a = f a , inc (a , refl)
opaque
Ω-corestriction-is-surjective : is-surjective Ω-corestriction
Ω-corestriction-is-surjective = elim! λ y x fx=y → pure (x , Σ-prop-path! fx=y)